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GENERAL INTRODUCTION 

The ultimate goal of the synthetic natural products chemist is to synthesize 

complex natural products from simple inexpensive starting materials, using routes 

that are as efficient as possible. To complete this task, the synthetic chemist uses a 

vast array of known reactions that have been discovered by other scientists. In 

addition, the synthetic chemist should try to improve the aforementioned reactions, 

applying them to new systems and testing their limits and boundaries. Sometimes 

the synthetic chemist may be called upon to develop a reaction of his or her own to 

solve an intriguing synthetic problem. To accomplish the goal, the synthetic 

chemist must not only rely on his or her synthetic knowledge, but on his or her 

mechanistic knowledge as well, incorporating all the disciplines of organic 

chemistry into the problem solving process. 

The purpose of this research was to create new routes to complex and 

biologically useful natural products. Three projects were undertaken to develop 

efficient routes to ebumamonine, MS-444 and halenaquinone. 

In the first project, we worked on the synthesis of ebumamonine, a 

pentacyclic alkaloid that was first synthesized by Wenkert in 1965.^ Our goal was 

to invent a more efficient route to the core structure which could be applicable to 

other molecules of similar nature. Our route involved the use of a novel 

nucleophilic addition of a metallated pyridine to an imine. We then extended this 

same methodology to the synthesis of a variety of indolo[2,3-a]quinolizine 

alkaloids. 

In the second project, we set out to synthesize MS-444, a compound that 

was recently discovered from the culture broth of a bacterial strain.^ In this project, 

we developed a method of synthesizing a highly-functionalized furan. This furan 

was then alkylated and further manipulated to produce the core structure of MS-

444. 

In the third project, we worked on halenaquinone, a natural product which 

exhibits biological activity and has been isolated from marine sponges in the Indian 
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and Pacific Oceans.^ Only one total synthesis of this compound has been reported 

and that was by Harada and co-workers in 1988.'* Upon our undertaking of this 

project, we developed a direct approach to the halenaquinone skeleton which 

involved the use of a photochemical hydrogen atom abstraction followed by a [4+2] 

cycloaddition. 

Dissertation Organization 

This dissertation was written so that each chapter represents a publishable 

article. Therefore, the numbering scheme adopted for the compounds and the 

references are independent for each paper. 

References 
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1995, 48, 948. 

3. Roll, D. M.; Scheuer, P. J.; Matsumoto, G. K.; Clardy, J. J. Am. Chem. Soc. 
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CHAPTER 1. A SYNTHETIC APPROACH TO EBURNAMONINE 

AND INDOLO[2,3-a]QUINOLIZINE ALKALOIDS 

A paper, a portion of which was submitted to Synlett. 

The pentacyclic skeleton of the Indole alkaloid ebumamonine (1) has 

received considerable attention from synthetic chemists over the past 30 years. 

Ebumamonine was first isolated from the African apocynaceous plant Hunteria 

eburnia In 1960 by Barlett and Taylor/ Since that time, It has been shown to be a 

useful cerebrovascular agent.^ Barlett and Taylor originally assigned the 

stereochemistry at the ring juncture to be trans. In 1965, Emest Wenkert and co­

workers completed the first synthesis of racemic ebumamonine, and they 

established that the correct stereochemistry was indeed cis,^ Since that time, 

ebumamonine has been synthesized on numerous occasions with the most recent 

being In 1994 by Grieco"® and Palmlsano.'*'' 

George A. Kraus and John H. Malpert 

Introduction 

(1) 
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The original synthesis of ebumamonine by Wenkert employed a Pictet-

Spengler cyclization as its key step. Since that time, the majority of the syntheses 

involving this molecule have involved the use of a Pictet-Spengler or Bischler-

Napieralski cyclization as their key step. As a consequence, many of the 

aforementioned syntheses have led to a mixture of ebumamonine and epi-

ebumamonine, which contains the trans ring fusion. 

Scheme I 

• ly 

(2) 

(4) 

Pd/C 

1)K0H 

2) Ethyl 
lodoacetate 

(3) 

1) 1M HCI 
2) Wolff-Kishner 

3) Hg(0Ac)2 

CXjO< Clo: 

(5) COgEt 

1)H2 
Pd/C ^ 

2) NaOEt 

The original synthesis (Scheme I) of (//-ebumamonine by Wenkert began 

with compound (2), which was easily prepared from 3-acetylpyridine and 3-(2-

bromoethyl)indole. Hydrogenation over palladium-charcoal yielded predominately 

the tetrahydro product (3), which underwent a Pictet-Spengler cyclization upon 

addition of 1M hydrochloric acid. A Wolff-Kishner reduction eliminated the ketone 
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to provide the ethyl substituent, and oxidation with mercuric acetate provided the 

corresponding iminium salt (4). Treatment of this perchlorate salt with base and 

subsequent addition of ethyl iodoacetate provided the desired alkylated product 

(5), which was isolated once again as a perchlorate salt. Hydrogenation of the 

iminium salt (5) provided a mixture of stereoisomers which were carried on without 

further purification. Cyclization was achieved by treating the esters with sodium 

ethoxide to provide ebumamonine (1) and its trans isomer in an eight to one ratio. 

As was mentioned eariier, most of the syntheses involving ebumamonine 

employed either a Pictet-Spengler or Bischler-Napieralski cyclization as their key 

step. However, two exceptions should be noted. The first of these exceptions 

(Scheme II) was done by Philip Magnus and co-workers at Indiana University in 

1986.® Magnus employed a novel rearrangement as his key step towards the 

transformation of ebumamonine. Initially compounds (7) and (8) were heated 

together to form the tetracyclic compound (9). The reaction proceeds by an indole-

2,3-quinodimethane which undergoes an intramolecular [4+2] cycloaddition to form 

the desired product. The sulfide is then oxidized to the sulfoxide with m-

chloroperbenzoic acid, and cyclization of the five-membered ring is completed with 

trifluoroacetic anhydride. The sulfide is then removed with Raney nickel to give 

compound (10). Surprisingly, when compound (10) was treated with cyanogen 

chloride, chlorination occurred rather than the reagent functioning as a cyanating 

agent. It might also be noted that the amine protecting group was lost at this stage. 

Treating compound (11) with hydrochloric acid in methanol triggered the key 

rearrangement to the lactam (12) in 90% yield. Reduction to remove the lactam 

and subsequent oxidation to restore the carbonyl next to the indole nitrogen gave 

the ebumamonine (1). 

The rearrangement that provides compound (11) is especially noteworthy, 

and the mechanism is shown in Scheme III. Protonation of the indole nitrogen 

cleaves the carbon-carbon bond at the 3-position of the indole to provide a 
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Scheme II 

PhS 

(R = -S02C6H40Me-p) 
(7) (8) (9) 

1) MCPBA 

2) (CF3C0)20 
heat 

3) Raney Ni 

(10) 
CI CI 

(11) 

HCI 
MeOH 

.0 1)LiAIH4 

2) CrOg 
pyridine 
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Scheme 

(11) 

H 

CI CI 

tetracyclic ring system. Reattachment at the 2-position restores the pentacyclic 

structure, which undergoes cleavage again to restore aromaticity. Nucleophilic 

attack by the indole nitrogen, followed by the addition of water, completes the 

mechanism to give compound (12). 

The second synthesis which does not involve either a Pictet-Spengler or 

Bischler-Napieralski cyclization was completed in 1994 by Grieco and co-workers 

at Indiana University."® Grieco's strategy (Scheme IV) involved the use of an 

intramolecular imino Diels-Alder reaction as the key step. Starting with the readily 

available valero lactam, Grieco and co-workers alkylated with ethyl iodide and 

protected the lactam nitrogen to give compound (13). This lactam was reduced 
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Scheme IV 

1) 2 eq BuLi 
2) EtI 

3) p-(trlmethylsllyl)ethyl 
p-nitrophenyl carbonate 

C02CH2CH2SiM63 

1) NoCHoCOoEt 
Cu 

2) OH" 

(14) 

HOgC 

C02CH2CH2SiMe3 

1) LiAI[OC(CH.^)^kH 

2) H2SO4 

(13) 

C02CH2CH2SiMe3 

1) p-NQoC«H^OH , 
DCC 

2) N-lithioindole-
3-carboxaldehyde 

(15) 

=0 

COoCHoCHpSiMe. 

(16) \ 

1) heat 

(18) (1) 

and acidified to give the eneamide (14). Treatment with ethyl diazoacetate and 

copper bronze provided a mixture of cyclopropane esters which could be 

epimerized to the desired stereoisomer. Saponification gave the corresponding 

acid (15). Coupling to the indole moiety was best achieved by converting the acid 

to the activated p-nitrophenyl ester and then treating with the lithiated indole to give 

compound (16). The desired vinyl indole was then prepared by subjecting the 

aldehyde to a Wittig reaction to provide compound (17). The amine protecting 
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group was removed by treatment with benzyltrimethylammonium fluoride, which 

also cleaved the cyclopropane ring to give the desired precursor (18) to the Diels-

Alder reaction. Compound (18) smoothly underwent cyclization when heated, and 

subsequent isomerization provided eburnamonine (1). 

The chemistry of zwitterionic indolo[2,3-a]quinolizine alkaloids has received 

little attention from synthetic chemists, and reviews of these types of compounds 

are scarce. However, recent studies indicate that some of these alkaloids exhibit 

antitumor activity, and interest In them has increased over the course of the past 

ten years, as evidenced by the review of Gribble.® 

This ring system can be represented by two different resonance structures: 

the zwitterionic form A and the neutral form B without a charge. Support for this 

dual nature is given by the colored nature of the compounds, their high dipole 

moments, and their pH dependent ultraviolet-visible spectra. It might also be noted 

that these compounds may exist in the protonated fomn in plants, and in most 

cases, they are isolated and purified as their acid salts. Usually, the perchlorate 

ion is the counterion of choice, but examples of salts containing the chloride or 

bromide ion exist as well.® 

Indolo[2,3-a]pyridocoline (19) can be regarded as the parent compound for 

a variety of indolo[2,3-a]quinolizine alkaloids. It has been isolated from the bark of 

Gonioma kamassiE. Mey {Apocynaceae)7 Flavopereirine (20) is one of the most 

popular synthetic targets of this group of alkaloids and recently has drawn interest 

for its antitumor and antiviral activities, which also includes anti-HIV activity.® 

Flavopereirine (20) was isolated in the late 1950s by Janot® and co-workers, and 

History of lndolo[2,3-a]quinolizine Chemistry 

A B 
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Rapoport^° and co-workers almost simultaneously discovered it from the South 

American Geissospermum laeve (Vellozo). Schmid^^ and co-workers also isolated 

flavopereirine (20) from the South American Strychnos melinoniana Baillon 

{Loganiaceae). 

(20) (19) 

The 6,7-dihydro analogs [compounds (21) and (22)] of the indoio[2,3-

a]quinolizine alkaloids have become relevant synthetic targets due to discoveries 

indicating that they have biological activity. 6,7-Dihydroflavopereirine (22) was 

isolated by Angenot and DenoeP^ from the Africa Strychnos usambarensis Gilg. 

{Loganiaceae). Recent discoveries show that 6,7-dihydroflavopereirine (22) has 

similar physiological activities as flavopereirine (20).® " It might also be noted that 

when alkaloid numbering is used, these compounds are called 5,6-

dihydroindolo[2,3-a]pyridocoline (21) and 5,6-dihydroflavopereirine (22). Both 

forms of numbering are used interchangeably in the literature. 

(22) (21) 

Of the pentacyclic indolo[2,3-a]quinolizine alkaloids, sempervirine (23) is 

probably the most common synthetic target. The first report of sempervirine (23) 

was by Janot and co-workers In 1948,"' and shortly thereafter Woodward published 

its structure along with a synthesis of the A/-methyl derivative.^® Although it has 

been claimed that Woodward synthesized sempervirine (23),^® no account of this 

has ever appeared in the literature. Within the last 15 years, sempervirine (23) has 

been identified as a selective destroyer of the proliferative capacity of cancer 

cells. 
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Two pentacyclic indolo[2,3-a]quinolizine alkaloids that have been just 

recently discovered are Villagorgin A (24) and Villagorgin B (25). They were 

discovered in the gorgonian Villagorgia rubra, a genus that has never been studied 

before, in New Caledonia. Villagorgin A (24) was shown to produce strong 

inhibition on the acetylcholine induced contraction of guinea-pig ileum and showed 

an inhibitory effect against human platelet aggregation. These indole alkaloids are 

the only known alkaloids with an imidazole ring attached to the indoloquinolizidine 

skeleton.^® 

The last type of indolo[2,3-a]quinolizine structure that will be discussed is the 

7,12-dihydroindoio[2,3-a]quinolizin-4(6H)-one structure, which has a lactam 

carbonyl placed on the D ring. The parent compound, 7,12-dihydroindolo[2,3-

a]quinolizin-4(6H)-one (26) has been synthesized as an intermediate by two 

different groups but has not been isolated from natural sources.'® 

The 10-methoxy derivative is known more commonly as hannalanine (27). 

It is isolated from the seeds of Peganum harmala {Zygophylaceae), which is found 

on the Indo-Pakistan subcontinent and in other parts of Asia. The seeds are 

narcotic, anthelmintic, antispasmodic and used for asthma and cases of 

rheumatism. The alkaloids isolated from these seeds are also potent reversible 

inhibitors of monoamine oxidase, and in some cases, these compounds were 

found to have antimicrobial activity.^® 
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MeO' 

(27) 

OX! N 
H 

CHO 

(28) (29) 

The other two alkaloids which are shown are nauclefidine (28) and 

nauclefine (29).^^ Nauclefidine (28) has been isolated from Nauclea officinals. 

The plant has been used as an antibacterial and anti-inflammatory agent by those 

who practice folk medicine in China. The structure was originally elucidated by 

researchers in China, who placed the formyl group in a position "para" to the 

lactam carbonyl.^ That structure, however, was later revised by workers in Japan 

to the structure that is shown.^^ 

Several syntheses of indolo[2,3-a]quinolizine alkaloids have been 

completed over the years, and they have been chronicled nicely by Gribble in 

1988.® The earliest synthesis reported is of A/-methylsempervirine by Woodward 

and co-workers in 1949.^® Syntheses occurred periodically throughout the years, 

leading up to the most recent synthesis of flavopereirine (20) and 5,6-

dihydroflavopereirine (22) by Lounasmaa and co-workers in 1996.^" 

The synthesis of A/-methylsempervirine (34) by Woodward (Scheme V) was 

very direct. The synthesis was started with A/-methyltryptophan (30) and used 

known literature procedures to obtain A/-methylhamian (31).^^ This known 

compound was then lithiated and treated with the corresponding cyclohexanone 

(33) to give the desired A/-methylsempervirine (34). 
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Scheme V 

N 
I 

CHg 

(30) (31) 

(32) (33) (34) 

In the late 1950's, two groups used very similar routes to synthesize the salt 

of indolo[2,3-a]quinoli2ine (41). Glover and Jones were the first chemists to use a 

Fischer indole synthesis to make an indolo[2,3-a]quinolizine.^® They were followed 

shortly thereafter by Swan and co-workers, who published almost an identical 

synthesis." 

The Swan synthesis is shown in Scheme VI. Starting with 2-cyanopyridine 

(35) and 3-ethoxypropylmagneslum bromide, they were able to isolate the imine 

(36). Treating the imine with concentrated hydrobromic acid and acetic acid 

cyclized the product to the ketone (37) in 68 % yield. Compound (37) was then 

converted to the corresponding hydrazone (38) in 57 % yield, which then 

underwent the Fischer-indole reaction to give compound (39) in 57 % yield. Ortho 

chlorani! (40) was then used to convert the 6,7-dihydro salt to the desired 

compound (41) in 47 % yield. Swan then applied this same route to synthesize 

flavopereirine (20) and sempervirine (23). 

In 1963 Potts and co-workers used what is probably the most common 

strategy for making indolo[2,3-a]quinolizine alkaloids, in their efforts to make 

flavopereirine (20) and sempervirine (23).^® In this strategy, a 3-substituted indole 
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Scheme VI 

NC 

(35) 

1) EtQ(CHp).,MgBr^ 

2) 2N H2SO4 

48 % HBr 
1 

HOAc 

Br" 
PhNHNH. 

PhNHN 
HCI, NaOAc EtOH A 

(37) (38) 

O 
EtOH A 

(39) 

cr "n H 

CI 

(40) (41) 

is combined with an appropriately substituted pyridine to form a pyridinium salt. 

The salt is then further manipulated to give the desired indoloquinolizine. 

In Potts' synthesis of flavopereirine (20) (Scheme VII), he starts with 3-

acetylindole (42) and heats it in the presence of iodine and 3-ethyipyridine to give 

the corresponding pyridinium salt (43) in 80 % yield. Lithium aluminum hydride 

reduction not only reduced the ketone, but it reduced and cyclized the pyridine ring 

as well, giving compound (44) in 52 % yield. The tetrahydro compound (44) was 

then put through a cycle of reduction and oxidation to give compound (45) as its 

perchlorate salt, which was treated with palladium on carbon to give the desired 

molecule (22). 

In 1988 Gribble and co-workers devised a clever plan to directly synthesize 

the indolo[2,3-a]quinolizine ring system.^® Basing his plan upon the ready 

availability of 2-(2-pyridinyl)indoles, he planned to use the nitrogen of the pyridine 
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Scheme VII 

Ic 

3-ethylpyridine 
heat 80 % 

(42) 

JJ  A+r  ^  

(43) 

1) Hg. PtOg 

2) Hg(0Ac)2 
3) NaCI04 

Pd/C 

ring to help direct metallation at the 3-position of the indole. First, he had to choose 

a protecting group for the indole nitrogen. This group needed to be easily 

removable since earlier work by Stevens had shown that some protecting groups, 

such as the benzyl group, were difficult to remove.^" Gribble chose the N-

phenylsulfonyl protecting group. Starting with compound (46) in Scheme Vill, he 

was able to lithiate at the 3-position of the indole by treating with n-BuLi. This 

nucleophile was then quenched with 2-bromoacetaldehyde to afford intermediate 

(47), which cyclized upon workup to give the pyridinium salt (48) in 48 % overall 

yield. Treatment with base deprotected the A/-phenylsulfonyl protecting group, as 

well as eliminating the alcohol, to give the desired product (19) in 89 % yield. 

The last synthesis that will be discussed was done in 1995 by Furstner and 

co-workers at the Max-Planck-lnstitut fur Kohlenforschung in Germany.^^ This 

synthesis makes use of a low-valent titanium induced reductive coupling to form 
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Scheme VIII 

OH 

2) BrCHaCHO 
3) AcOH 

1) n-BuLi Br 
48% 

(46) (47) 

OH 

Br~ aq NaOH 

MeOH 
A 89 % 

(48) (19) 

the five-membered ring of the indole. Starting with 2-iodoaniline (49) (Scheme IX), 

Furstner used a palladium-catalyzed coupling reaction to fonn the desired aniline 

(51) in excellent yield. The alkyne was then treated with mercuric sulfate in 

aqueous methanol to provide the desired ketone (52) in 53 % yield. This aniline 

was then coupled with the acid chloride (53) to give the corresponding amide (54) 

in a rather good 85 % yield. Refluxing compound (54) in a suspension of titanium-

graphite in THF gave the desired indole (55) in modest yield. Cyclization of the C 

ring was then achieved by treating the methyl ether with boron tribromide and 

isolating the compound as its perchlorate salt (56) in 79 % yield. Treating the 

dihydro compound with DDQ afforded the desired compound (57), which was once 

again isolated as its perchlorate salt. 
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Scheme IX 

a+,^^OMe 
NHo 

PdCl2, Cul, 

PPhg, NEts 
96% 

OMe 

(49) 

HgS04 

(50) (51) 

MeOH/HgO 

O H 

OMe ^ 85°/° 

53% 

(52) (53) 

Ti-graphite 

(TiCl3:C8K = ̂ :2) 
52% 

OMe 

(55) 

clor AcOH 

2) NaClfi 
2) NaCI04 

78% 

OjOt 
CIO. 

(56) (57) 

Results and Discussion 

We became interested in developing a synthetic route to ebumamonine (1) 

because of its intriguing chemical structure and interesting biological activity. At 

the time we started the project, we were amazed that almost all of the known 

syntheses followed the same type of route via a Pictet-Spengler or Bischler-

Napieralski cyclization. We were also surprised that no one at that time had tried a 

route that contained a Diels-Alder cycloaddition as its key reaction. Our original 

strategy was based on this observation. 
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Our original strategy is shown in the retrosynthetic analysis shown in 

Scheme X. We had hoped that the pentacyclic framework of ebumamonine (1) 

could be constructed from an intramolecular [4+2] cycloaddition of a molecule such 

as (58). A molecule such as (58) could easily be assembled from precursors such 

as the appropriately substituted 3-pyridyl acetic acid derivative (59) and indole-3-

carboxaldehyde (60). 

Scheme X 

(60) (59) 

We began our synthesis (Scheme XI) by using 1,3-dicyclohexylcarbodiimide 

(DCC) and a catalytic amount of 4-dimethylaminopyridine (DMAP) to couple 

indole-3-carboxaldehyde (60) and the readily available 3-pyridyl acetic acid (61) 

in a 63 % overall yield. Many experimental conditions were tried before settling on 

the DCC coupling reaction. Included were attempts at coupling the corresponding 

acid halide with the indole (60), and attempts involving the analogous carbonate of 

acid (61). However, all these attempts led to little or no coupling product. With 

compound (62) in hand, we then converted the aldehyde to the corresponding 
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alkene (58) via a Wittig reaction. We were now ready to try our key Diels-Alder 

reaction. Unfortunately, subjecting compound (58) to high temperatures did not 

lead to any cyclized product (63). We also tried to promote the reaction with Lewis 

acid catalysts, but once again, we met with failure. Around this same time, Grieco 

and co-workers published their synthesis of ebumamonine (1) using a Diels-Alder 

approach,"® and we decided to seek an alternative route. 

Scheme XI 

DCC. DMAP 
63% 

(60) (61) (62) 

Wittia ^ \\\ 

o 

(58) (63) 

The next method that we tried was to alkylate a pyridinium salt with a N-

protected indole anion. We first made the pyridinium salt (65) by reacting the 

corresponding pyridine (64) with allyl bromide (Scheme XII). The oxygen 

functionality at the 4-position of the pyridine ring would eventually have to be 

removed for the completion of ebumamonine (1), but we needed it to block "para" 

attack by the nucleophile. The oxygen functionality could have also been used 

later on in the synthesis to promote cyclization of the lactam ring of ebumamonine 

(1). The allyl group would be eventually contracted by one carbon and connected 

to the 3-position of the indole. Treating the pyridinium salt (65) with the lithiated 

indole (66) provided compound (67) in 75 % yield. Unfortunately, we were unable 

to manipulate the allyl group any further and this route had to be modified. 
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Scheme XII 

N.^ 
ally! bromide |^+ Br" 

OTBDMS 

OTBDMS 

(64) (65) 

Oj 1) n-BuLi 
N-" "^TBS 
SOgPh PhOgS 

0 

(66) (67) 

We planned to modify our synthesis by using 3-(2-bromoethyl)indole to N-

alkylate the pyridine ring and then cyclize the ring in an intramolecular fashion. 

During one of the experiments towards this route, we made an interesting 

discovery. Treating the 3-(2-bromoethyl)indole (69) with base provided us with the 

spiro compound (70). Upon searching the literature, we found that this molecule 

had already been reported by Rapoport and co-workers.^^ Rapoport, however, did 

not do any chemistry with compound (70). 

(69) (70) 



www.manaraa.com

21 

Surprisingly, alkylating the 2-position with a pyridine anion equivalent does 

not appear to have been reported. Therefore, we decided to redirect our efforts 

toward this pathway. Our next strategy towards ebumamonine (1) (Scheme XIII) 

was to take the spiro compound (70), and alkylate it with the appropriately 

Scheme XIII 

(1) 

+ X" 
> 

•7' 

V 

(70) (71) (72) 

substituted pyridine (71). The cyclopropane ring would then be opened and 

connected to the nitrogen of the pyridine ring to fonri an intermediate such as (73). 

Reduction of the pyridine and cyclization would then lead to the desired product 

(1). 

The first step of the synthesis was the addition of the metallated pyridine to 

the imine (70) (Scheme XIV). Starting with the readily available 2-bromopyridine 

(74), we made the corresponding anion at the 2-position by treatment at -78 °C 

with n-BuLi. Adding this anion to the imine (70) provided us with the 1,2-addition 
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product (75) in 69 % percent yield. We next installed the carbonyl functionality on 

the indole nitrogen by treating compound (75) with chloroacetyl chloride and 

triethylamine to give the amide (76). Unfortunately, our attempts to open up the 

cyclopropane ring met with failure.^^ 

Scheme XIV 

chloroacetyl 
chloride 

1) A7-BULI 

Brp, Fe + Br" 

(76) (77) 

Because we were unable to open the cyclopropane of the indoline structure, 

we hoped that by changing the indoline amine to an imine, we would then be able 

to somehow open up the cyclopropane ring. Our first idea was to design a 

molecule such as the imine (78), where addition of a nucleophile would cause loss 

of the X group and regenerate the imine moiety. 

+ -Nuc 'X i 

Nuc 

(78) (79) (80) 
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The first compound that we set out to make was the imine where X = CI. 

Starting with 3-(2-bromoethyl)indole (69), we were able to generate the indole 

(81) with the chlorine at the 2-position by treating with A/-chlorosuccinimide (NCS) 

in acetic acid. Treating this indole (81) with base provided us with the desired 

imine (82) in 91 % yield. We were also able to use similar conditions so that X = 

Br, providing us with compounds (83) and (84). 

AcOH K2CO3 
A) NCS, 61 % A) 91 

B) 99 % B) NBS, 77 % 

(69) 
(81)X = CI 
(83) X = Br 

(82) X = 01 
(84) X = Br 

Once again we made the 2-lithio pyridine from its bromide counterpart (74) 

and reacted it with the imine (82). We were able to isolate some of the desired 

compound (85) after column chromatography, but the yield (<10 %) was too low to 

be of any synthetic value. We tried again with the bromoimine (84), but we met the 

same fate. Part of the problem was that the reaction did not go to completion, 

leaving a mixture of starting material and products. Normally, this is not a problem 

as reaction mixtures can be cleaned up via silica gel chromatography. However, 

the compound (85) was too sensitive and could not be purified by column 

chromatography. 

1) n-BuLi 
2) 82 or 84 

(74) 

<  1 0 %  
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Scheme XV 

i; 
1) n-BuLi 
Z) uui 
3)84 

(74) 

BuaSn 
(Ph3^2PdCl2 W 

(86) 

(85) 

(85) 

84 
(87) 

(88) 

(Ph3P)2PCICl2 
UUI, aiisopropyi 
amine 

84 

(85) 

To correct this problem, we realized that compound (8 5) had to be 

generated completely and cleanly if we wanted to use this pathway. Therefore, we 

began trying to couple the imines (8 2) and (8 4) with different types of 

organometallics (Scheme XV). The first metal that we tried was copper, and that 

reaction did not work. We then tried coupling the vinyl bromide (8 4) with 

organotin®^ reagents (8 6) via Stille coupling,^"* but this did not result in any of the 

desired product. We also tried to couple (8 4) with pyridineboronic acids (8 7) by 

using the conditions of Suzuki,but once again we met with failure. We also tried 

to couple acetylenes to the vinyl bromide (8 4) using the conditions of 
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Sonogashira^® in hopes that we could further manipulate such a molecule (89) into 

our desired product, but these conditions did not work either. 

At this point we wanted to verify that our assumption that the low yield of 

compound (85) was due in fact to it being sensitive to the silica gel and not the 

reaction conditions. To do this, we decided to react imine (84) with a variety of 

nucleophiles to see what kind of yields we would get (Scheme XVI). Treating tert-

butyl acetate with lithium diisopropylamide provided the anion (90), which reacted 

nicely with compound (84) to provide compound (91) in quantitative yield. The 

lithium anion of acetophenone (92) also reacted well, giving compound (93) in 

excellent yield. Finally, the lithium anion of acetonitrile (94) was treated with the 

imine (84), and it gave 57 % yield of compound (95). Unfortunately, more 

hindered anions, such as the anion of 3-pentanone, could not be added to (84). 

Scheme XVI 

(84) (90) (91) 

(84) -h 

(92) (93) 

(84) 

H 

(94) (95) 
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With these results we were convinced that we had a good general pathway 

to a variety of natural products, including ebumamonine (1), if we could find a way 

to open the cyclopropane ring. Therefore, we retraced our steps and returned to 

compound (75). We began to look at oxidation of the indoline amine to an imine 

and then proceed via that pathway. We first tried to use fert-butyl hypochlorite^^ 

and calcium hypochlorite as oxidizing reagents, but to no avail. Finally, we were 

able to achieve oxidation with Chlorox bleach to get our desired compound (85) in 

quantitative yield.^® Unfortunately, the imine (85) was sparingly soluble in most 

organic solvents, and this fact made further work on this compound somewhat 

problematic. 

With a reproducible pathway to compound (85), we next set out to open the 

cyclopropane ring and cyclize the pyridine ring onto the newly-formed ethyl 

appendage. We had hoped that Lewis acid coordination to the indole nitrogen 

would open the cyclopropane ring, and the resulting carbocation would be trapped 

by the pyridine nitrogen. We tried a host of reagents (HBr; TiCI^; BF3 OEtg, Nal; 

SnC^; KBr, ZnBrg, crown ether) that had been used successfully by others.^® 

However, in our hands, these reactions failed to work and destroyed the starting 

material. 

Being that all the reaction conditions that we tried had been acidic 

conditions, we then began to look at ways of opening the cyclopropane ring under 

basic conditions. We thought that if we could possibly add a nucleophile via 1,4-

addition and then convert this nucleophile to a leaving group, then we would have 

a viable pathway to the ebumamonine (1) ring system. We began to look at sulfur 

Chlorox 
bleach 
100% 

(75) (85) 
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compounds because of their nucleophilicity and ability to be converted to other 

functional groups. We were pleased to learn that treatment of compound (85) with 

the lithium anion of thiophenol produced the 1,4-addition product (96) in 24 % 

purified yield. We were naturally disappointed with the low yield, but we felt that 

this was mainly due to the insolubility of compound (85). The results look much 

better if one considers that the overall yield of the preceding two steps [from 

compound (75)] is 24 % or approximately 50 % for each step. 

Now that we had a method for opening the cyclopropane ring, we wanted to 

find a method for installing the cariDonyl next to the indole nitrogen. Unfortunately, 

this process proved tougher than we anticipated. Treatment of the compound (96) 

with a variety of bases (triethylamine, lithium diisopropylamide, n-butyl lithium) and 

quenching with acid chlorides or anhydrides (97) did not lead to any of the desired 

product (98). In most cases, just starting material was recovered. 

PhSLi 

(85) (96) 

SPh 

(96) (97) 

R 

(98) 



www.manaraa.com

28 

About this time, an article appeared in the literature in which 2-

bromopyridine (74) was selectively lithiated at the S-position."® Quenching this 

compound with an electrophile produced the 3-substituted 2-bromo pyridine (99) 

in moderate yield (57 %). 

Brv. 

15 
1)LDA 

Br.^ .N 

2)E+ DO 
(74) (99) 

We then decided to change our plan of attack by using this developed 

chemistry and substituting the pyridine ring before attaching it to the indole moiety. 

The appendage that we decided to attach was the ally! group because allyl iodide 

is a good electrophile and the double bond could eventually be manipulated into a 

carbonyl via ozonolysis. However, we were disappointed upon doing the reaction 

that we only obtained a 18 % overall yield of the desired 3-substituted pyridine 

(99). 

"0 
DLDA 
2) Allyl iodide 

1 8 %  

(74) (99) 

Going back to the original reference,"^ we discovered that the original 

authors claimed that removal of the proton at the 3-position was an equilibrium 

process (Scheme XVII). We then reasoned that if we used a stronger hindered 

base, then the equilibrium would be shifted further to the right and give a higher 

yield. The base that we chose was lithium 2,2,6,6-tetramethylpiperidine (LiTMP), 

and we were happy to discover that changing bases improved the yield of the 

reaction from 18 % to 44 %. 
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Scheme XVII 

(74) (100) (101) 

1) LITMP ^ 
2) Allyl iodide 

44% 

(74) (99) 

With compound (99) in hand, we were now ready to continue our synthesis 

of ebumamonine (1). Unfortunately, upon metallating compound (99) with n-BuLi 

and quenching with imine (70) (Scheme XVIII), we were unable to isolate any of 

the 1,2-addition product (102). We then tried to manipulate the allyl side chain, 

converting it to a 2-hydroxyethyl substituent. However, upon trying the reaction 

with this analog (103), we were still unable to isolate any of the desired addition 

product (104). It appears that the electrophile (70) will only react with relatively 

unhindered nucleophiles as we had trouble before when the nucleophile became 

somewhat bulky. 

With the aforementioned discouraging results, we decided to go back to 

compound (96) and work on closing the C ring. Earlier, we had tried to change the 

phenylsulfide group in compound (96) to an iodide. Naturally, we then expected 

the iodide to be displaced by the nitrogen on the pyridine ring to give us the 

desired cyclized product (105). Using a method developed by Corey,"^ we treated 

compound (96) with excess sodium iodide and methyl iodide. At the time, we felt 

that we had made the desired compound (105), but unfortunately the compound 

was too insoluble for complete NMR characterization. The only encouraging sign 
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Scheme XVIII 

+ 

(99) (102) 

+ 

(103) 

Nal. Mel. DM^ 

(96) (105) 

that the reaction was working was that thioanisole was being isolated from the 

reaction mixture. 

Upon searching the literature for compounds of this type, we realized that 

we had stumbled upon a relatively uncharted area of research so we began to 

redirect our efforts towards the synthesis of indolo[2,3-a]quinolizines. In addition to 

these molecules being unstudied, the potent biological activity® made them an 

even more attractive synthetic target. Taking our cues from the literature,^^ we tried 

isolating the indolo[2,3-a]quinolizines as their perchlorate salts rather than the 

iodide salt. This change immediately provided dividends as the reaction of 

compound (96) with sodium iodide and methyl iodide was repeated. This time, 

however, the reaction mixture was treated with sodium perchlorate to afford 

compound (106) in 34 % yield. 
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1) Nal. Mel, DMF 
2) NaCI04 ^ 

34% 

Compound (106) was just one step away from the natural product 

lndolo[2,3-a]pyridocoline (19). So using known conditions,^^ we treated compound 

(106) with 2,3-dichloro-5,6-dicyano-1,4-ben2oquinone (DDQ) in refluxing acetic 

acid, and we isolated the desired product as its perchlorate salt (107) in 77 % 

yield. 

in CIO4" IIDDQ. AcOH 
reflux 

2) NaCI04 
77 % 

CIO, 

(106) (107) 

At this point, we wanted to show that the pathway which we had developed 

was general and could be used for a wide variety of natural products. The first two 

natural products that came to mind were hannalanine (27) and nauclefidine (28). 

To design a pathway to these molecules, we had to install an oxygen functionality 

next to the pyridine nitrogen. We did this by starting with the known 2-bromo-6-

methoxypyridine''^ (108) (Scheme XIX, page 33). Treating this compound with n-

BuLi and quenching the resultant anion with the imine (70), we were able to isolate 

compound (109) in 73 % yield. 
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MeO 

CHO 
(27) (28) 

It might also be mentioned at this time that we made an important discovery 

about the purification of these types of molecules. Previous attempts at purification 

by silica gel chromatography led to severely reduced yields and the compounds 

were still relatively impure. However, if the compounds were subjected to 

chromatography on neutral alumina with deoxygenated solvents, good yields of 

pure compounds could be obtained. 

Treating the indoline (109) with bleach provided the imine (110) in 91 % 

yield. The cyclopropane ring of this imine (110) was then opened via 1,4-addition 

with lithium thiophenoxide to give compound (111) in 61 % yield. This yield is 

rather significant, because in the series where no methoxy group was present on 

the pyridine ring, only a 24 % yield was obtained from this same reaction. Much of 

the difference in yield may be attributed to the greater solubility of the starting 

material. The final step of the synthesis involved cyclization and removal of the 

methoxy protecting group. Fortunately, treatment of compound (111) with sodium 

iodide and methyl iodide converted the phenylsulfide moiety to an iodide, cyclized 

it to the pyridine nitrogen, and removed the protecting group to provide the lactam 

(26) in 80 % yield. Compound (26) is the demethoxy analog of harmalanine (27); 

so it is conceivable that one could synthesize harmalanine (27) by starting with an 

analog of imine (70) which contains a methoxy group situated at the appropriate 

position. It is also conceivable that compound (26) could be formylated to form 

nauclefidine (28), giving support to the assertion that our pathway is general for a 

wide variety of natural products. 
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Scheme XIX 

OMe 
n-BuLi 

then 70 
73% 

OMe 

(109) 

Chiorox 
bleach 

91 % 

N. ^OMe LiSPh 
62% 

a N^^O Nal, Mel, DMF 
80% * 

(111) (26) 

To further support the generality of our synthetic pathway, we reacted the 

imine (70) with a couple of different pyridines. In the first case (Scheme XX), the 

lithium anion of 2-bromo-6-fert-butoxypyridine (112) was generated and quenched 

with the imine (70) to provide compound (113). Unfortunately, this reaction was 

generally low-yielding and irreproducible, quite unlike its methoxy counterpart. 

The second reaction that we performed was to alkylate the imine (70) with the 

anion of 2-bromo-5-methylpyridine (114) to give compound (115) in 84 % crude 

yield. This reaction had its drawback in that compound (115) was very sensitive to 

chromatography (both silica gel and alumina) and purification was not possible. 

However, the crude compound was generally pure enough to be used in further 

reactions without much trouble. 
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Scheme XX 

X 
(112) (113) 

a1) n-BuLI 

c„. 
(114) 

CH3 
(115) 

The fomnation of compounds such as (115) shows that this process could be 

used for the synthesis of flavopereirine (20) or its 6,7-dihydro analog (22), both of 

which have interesting biological activities.® Substitution of the methyl substituent 

at the 5-position of the pyridine ring with an ethyl group and subjecting it to the 

same sequence of reaction in Scheme XIX could conceivably lead to both 

compounds (20) and (22). The only reason that the 5-methyl analog was chosen 

in our model study was because the corresponding 2-bromo-5-methylpyridine was 

commercially available at the time and the 2-bromo-5-ethylpyridine was not. 

Conclusions 

We have developed a route that completes four of the five rings of 

ebumamonine (1) and contains functional handles to complete the synthesis. This 

(20) (22) 



www.manaraa.com

35 

same route has also been used to complete a synthesis of the natural product 

indolo[2,3-a]pyridocoline (19), and this pathway has been shown to be applicable 

to several other analogs of the indolo[2,3-a]quinolizine family. Along the way, we 

have discovered some interesting methodology involving the attack of nucleophiles 

at the 2-position of an indole ring system. This is a very unique method of 

constructing bonds in this type of system. Finally, we have also improved known 

methods of lithiating 2-bromopyridines at the 3-position. 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers 

and used without additional purification. Diethyl ether and tetrahydrofuran (THF) 

were distilled from sodium benzophenone ketyl. Benzene was distilled from lithium 

aluminum hydride. Toluene and methanol were distilled from sodium. 

Dichloromethane (CHgCy, and acetonitrile were distilled from calcium hydride. All 

reactions were conducted under an argon atmosphere and all extracts were dried 

over anhydrous sodium sulfate or anhydrous magnesium sulfate. Apparatus for 

experiments requiring anhydrous conditions were flame-dried under a stream of 

argon or dried in a 150 °C oven for 12 hours and cooled under a stream of argon. 

Alumina chromatography was conducted using activated neutral aluminum oxide, 

Brockmann I, standard grade (150 mesh), which was purchased from Aldrich 

Chemical Company. Silica gel chromatography (sgc) was performed on EM 

Science Kieselgel 60 (mesh 230-400). Thin layer chromatography (tic) was 

performed using EM Science Kieselgel F254 prepared plates with a thickness of 

0.25 mm. The solvent systems were suitable mixtures of hexanes (H) and ethyl 

acetate (EA) unless otherwise noted. Infrared spectra were obtained on a Perkin-

Elmer 1320 spectrophotometer and are reported in cm"\ Proton nuclear magnetic 

resonance spectra (300 MHz) were obtained using a Nicolet Magnetics 

Corporation NMC-1280 spectrometer. All chemical shifts are reported in 5 relative 

to tetramethylsilane as an intemal standard. Splitting patterns are designated as s 

(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of 
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triplets), and m (multlplet); the addition of br indicates a broadened pattern. 

Carbon-13 NMR spectra (75.46 MHz) were obtained on a Nicole NMC-1280 

spectrometer and are reported in 5 relative to CDCI3 (77.00 ppm) as an intemal 

standard. High resolution mass spectra (HRMS) were obtained on a Kratos model 

MS-50 spectrometer. Low resolution mass spectra (MS) were obtained on a 

Finnigan 4023 mass spectrometer. The purity of all title compounds was 

determined to be > 90 % by 'H NMR spectral detemiination. 

Spiro[cyclopropane-1,3'-[3//]indole] (70). Following the procedure 

of Rapoport,^^ anhydrous potassium carbonate (8.91 g, 64.4 mmol) was added to a 

solution of 3-(2-bromoethyl)indole (69) (3.61 g, 16.1 mmol) in 125 mL of 

acetonitrile. The solution was refluxed for 8 hours and filtered through a glass frit. 

Concentration afforded 2.22 g (96 %) of a yellow oil, which was generally pure 

enough to be used without further purification. However, vacuum pump distillation 

[75 °C (0.3 mm)] can be used to obtain the compound as a low-melting white solid. 

'H NMR (CDCI3) 5 1.76 -1.81 (m, 2H), 1.99 - 2.04 (m, 2H), 7.04 - 7.36 (m, 3H), 7.75 

(dd, = 7.8 Hz, J2 = 0.7 Hz, 1H). IR (film) 3054, 3007, 1528, 1448, 1234, 964, 767, 

746 cm'\ 

Spiro[cyclopropane-1,3'-(2'-pyridin-2-yl)indoline] (75). To a 

solution of 2-bromopyridine (0.864 g, 5.47 mmol) in 25 mL of THF at -78 °C was 

added n-BuLi (5.74 mmol, 2.50 ml of a 2.3 M solution in hexanes) dropwise. The 

solution was stirred for 1 hour at -78 °C. The imine (70) was added via cannula in 

5 mL of THF, and the solution stirred for 1 hour. The mixture was quenched with 

saturated NaHCOg and extracted with ether. The combined organic layers were 

washed with brine, dried over Na2S04, and concentrated. The crude product was 

purified by flash column chromatography on neutral alumina using deoxygenated 

solvents (20:1 H:EA to 100 % EA) to afford 0.846 g (69 %) of a yellow oil. ^H NMR 

(CDCI3) 6 0.48 - 0.53 (m, 1H), 0.66 - 0.71 (m, 1H), 1.07 -1.13 (m, 2H), 4.97 (s, 1H), 
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6.61 (d, J = 5.7 Hz. 1H), 6.70 - 6.75 (m, 2H). 7.04 (dt, J, = 0.6 Hz, Jg = 5.7 Hz, 1H), 

7.16 - 7.19 (m, 1H), 7.53 (d, J = 6.0 Hz, 1H), 7.66 (dt, J, = 1.5 Hz, Jj = 5.7 Hz, 1H), 

8.50 (dd, = 3.6 Hz, Jj = 0.6 Hz, 1H). IR (film) 3364, 3053, 1610, 1591, 1471, 

1230, 909, 741 cm \ MS (CI) m/z 223, 203, 136. HRMS m/z calculated for 

CisHi^Nji 222.1157, measured 222.1157. NMR (CDCg 5 13.7, 15.8, 29.9, 

68.7, 108.3, 118.2, 118.7, 121.0, 122.0, 126.6, 133.2, 136.4, 148.2, 150.3, 161.4. 

TLC (7:1 H:EA, alumina plates) R, = 0.37. 

Spiro[cyclopropane-1,3'-(2'-pyridin-2-yl)-[3H]indole] (85). To a 

solution of compound (75) (0.846 g, 3.81 mmol) in 50 mL of CHgClg was added 25 

mL of Chlorox bleach. The solution was stirred overnight at room temperature and 

monitored by TLC. Occasionally, more bleach had to added to ensure complete 

consumption of starting material. The two layers were separated, and the organic 

layer was concentrated to give 0.838 g (100 %) of a yellow wax, which was used 

without further purification. ^H NMR (CDCy 8 1.93 (AB quartet, J, = 2.9 Hz, Jg = 7.7 

Hz, 2H), 2.92 (AB quartet, = 2.9 Hz, = 7.7 Hz, 2H), 7.05 - 7.08 (m, 1H), 7.25 -

7.32 (m, 2H), 7.38 (dt, J, = 1.2 Hz, Jj = 7.6 Hz, 1H), 7.75 - 7.83 (m, 2H), 8.48 (dt, = 

1.0 Hz, J2 = 8.0 Hz, 1H), 8.57 (m, 1H). IR (film) 3053, 3006, 1632, 1587, 1441, 742 

cm"\ MS (CI) m/z 221, 117. HRMS m/z calculated for C^sH^Nj (M"^ -1): 219.0922, 

measured 219.0921. ^^C NMR (CDCy 6 21.8, 36.7, 117.1, 121.1, 122.4, 124.1, 

125.3, 126.3, 136.2, 143.2, 148.7, 153.0, 153.8, 175.7. TLC - not stable. 

3-(2-Phenylthioethyl)-2-(2-pyridyl)lndole (96). To a solution of 

thiophenol (0.64 mL, 6.18 mmol) in 10 mL of THF was added BuLi (3.71 mmol, 1.5 

mL of a 2.4 M solution in hexanes) dropwise at 0 °C, and the solution was stirred for 

20 minutes. The thiophenoxide anion solution was added via cannula to the 

heterogeneous solution of compound (85) (0.544 g, 2.47 mmol) in 4 mL of THF. 

The reaction was followed by TLC and quenched with saturated NaHCOg. The 

aqueous layer was extracted twice with CHgClg and dried over NagSO^. The crude 
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product was purified by flash column chromatography on neutral alumina using 

deoxygenated solvents (20:1 H:EA to 1:2 H:EA) to afford 0.196 g (24 %) of a yellow 

oil. NMR (CDCg 5 3.21 - 3.26 (m, 2H), 3.37 - 3.43 (m, 2H), 7.10 - 7.64 (m, 12H), 

8.61 (dd, J, = 4.8 Hz, = 0.6 Hz, 1H). 9.61 (bs, 1H). IR (film) 3440, 3055, 1589, 

1436, 738 cm'\ MS (CI) m/z 331. HRMS m/z calculated for CgiHigNgS: 330.1191, 

measured 330.1190. NMR (CDCg 525.6, 34.1, 111.2, 113.2, 118.9, 119.5, 

120.6, 121.5, 123.3, 126.4, 128.9, 129.2, 130.3, 132.3, 135.4, 135.9, 136.7, 149.2, 

150.4. TLC (20:1 H:EA, alumina plates) R, = 0.28. 

6,7-Dihydroindolo[2,3-a]quinolizin-5(12H)-ium perchlorate 

(106). The following is a modification of a procedure by Corey.'*^ Into a sealed 

tube was placed compound (96) (0.196 g, 0.593 mmol), Nal (0.445 g, 2.97 mmol) 

in 5 mL of N,N - dimethylformamide. Methyl Iodide (2 mL) was added, and the 

solution heated at 80 °C for eight hours. The solvent was removed via vacuum 

distillation, and the remaining solid was dissolved in CHgClj. The organic solution 

was extracted with 3M HCI (5X10 mL). The aqueous layer was concentrated to 15 

- 20 mL and then added dropwise to a solution of sodium perchlorate hydrate (4.0 

g in 10 mL of HgO). The solution was filtered and washed with cold water to afford 

0.064 g (34 %) of an orange-yellow solid: mp 258 °C (dec.). Literature value^^: mp 

255 -257 °C. Mass spectra of the perchlorate salt could not be obtained. 

Therefore, the zwitterionic structure was Isolated by treating the salt with aqueous 

KOH and extracting with chlorofonn. ^H NMR (Dg-DMSO) 8 3.56 (t, J = 7.5 Hz, 2H), 

5.15 (t, J = 7.4 Hz, 2H), 7.18 - 7.90 (m, 5H), 8.31 (dd, = 6.4 Hz, = 0.6 Hz, 1H), 

8.59 (dt, J, ~ 8.2 Hz, J2 = 1.3 Hz, 1H), 8.99 (dd, = 6.2 Hz, Jg = 0.6 Hz, 1H). IR (film) 

3327, 1634, 1557, 1100, 747, 623 cm \ MS (CI) m/z of the zwitterion 221, 195. 

HRMS m/z calculated for CigHi^Na (M^- 1): 219.0922, measured 219.0922. UV-Vis 

(MeOH) >^3,252, 314, 386. UV-Vis (MeOH / KOH ) 254, 316, 402. 
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lndolo[2,3-a]quinoiizin-5(12//)-ium perchlorate (107). Following 

the procedure of Furstner,^^ to a suspension of compound (106) (0.064 g, 0.200 

mmol) in 5 mL of acetic acid was added DDQ (0.135 g, 0.600 mmol), and the 

solution refluxed overnight. Another portion of DDQ (0.135 g, 0.600 mmol) was 

added, and the solution was refluxed for another five hours. The solution was 

diluted with ethanol and concentrated. The remaining solid was diluted with 2N 

NaOH and extracted with chloroform. The organic layer was acidified with 6N HCI 

and extracted several times (4X10 mL). The aqueous layer was concentrated to 

approximately 5 mL and then added dropwise to a solution of sodium perchlorate 

hydrate (4.0 g in 10 mL of HgO). The solution was filtered and washed with cold 

water to afford 0.049 g (77 %) of green-yellow crystals: mp 283 °C (dec). Literature 

value^^: mp 282 - 285 °C (dec). Mass spectra of the perchlorate salt could not be 

obtained. Therefore, the zwitterionic structure was isolated by treating the salt with 

aqueous KOH and extracting with chloroform. NMR (Dg-DMSO) 6 7.44 (t, J = 7.3 

Hz, 1H), 7.70 (dt, J, = 7.1 Hz, Jg = 0.7 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.98 (dt, J, = 

6.2 Hz, Jg = 0.8 Hz, 1H) 8.38 - 8.43 (m, 2H), 8.79 (d, J = 6.9 Hz, 1H), 8.98 - 9.06 (m, 

2H), 9.38 (d, J = 6.8 Hz, 1H). IR (film) 3587, 1647, 1630, 1472, 1375, 1111, 618 

cm'\ MS (CI) m/z of the zwitterion 218. HRMS m/z calculated for C15H10N2: 

218.0844, measured 218.0844. UV-Vis (MeOH) X„ax218, 238, 246, 294, 326, 340, 

358, 386. NMR (Dg-DMSO) 6 113.0, 116.9, 120.7, 121.8, 122.0, 122.3, 123.1, 

124.3, 127.6, 129.7, 130.8, 132.5, 136.0, 137.2, 141.5. 

Spiro[cyclopropane-1,3'-(2'-(6-methoxy)pyridin-2-yl)indoline] 

(109). To a solution of 2-bromo-6-methoxypyridine (108)"*^ (1.44 g, 6.09 mmol) In 

25 mL of THF at -78 °C was added n-BuLi (6.39 mmol, 2.80 ml of a 2.3 M solution in 

hexanes) dropwise. The solution was stirred for 1 hour at -78 °C. The imine (70) 

was added via cannula in 5 mL of THF, and the solution stinted for 1 hour. The 

mixture was quenched with saturated NaHCOg and extracted with ether. The 

combined organic layers were washed with brine, dried over Na2S04, and 
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concentrated. The crude product was purified by flash column chromatography on 

neutral alumina using deoxygenated solvents (30:1 H:EA to 100 % EA) to afford 

1.13 g (73%) of a yellow oil. 'H NMR (CDCg 5 0.61 -0.71 (m, 2H), 1.06-1.19 (m, 

2H), 3.87 (s, 3H), 4.83 (s, 1H), 6.58 - 6.62 (m, 2H), 6.70 - 6.75 (m, 2H), 7.01 - 7.08 

(m, 2H), 7.54 (dd, J, = 7.0 Hz, Jg = 8.0 Hz, 1H). IR (film) 3370, 2996, 1610, 1488, 

1029, 742 cm \ MS (CI) m/z 253, 251, 224, 144. HRMS m/z calculated for 

CieHieNzO: 252.1263, measured 252.1268. NMR (CDCy 5 13.6, 15.7, 29.9, 

53.0, 68.3, 108.6, 108.7, 113.1, 118.3, 118.9, 126.7, 133.8, 139.0, 150.6, 159.1, 

163.1. TLC (10:1 H:EA, alumina plates) R, = 0.86. 

Spiro[cyclopropane-1,3'-(2'-(6-methoxy)pyrld-2-yl)-[3W]lndole] 

(110). To a solution of compound (109) (0.361 g, 1.43 mmol) in 10 mL of CHgClg 

was added 7 mL of Chlorox bleach. The solution was stirred ovemight at room 

temperature and monitored by TLC. Occasionally, more bleach had to added to 

ensure complete consumption of starting material. The two layers were separated, 

and the organic layer was concentrated to give 0.324 g (91 %) of a yellow wax, 

which was used without further purification. ^H NMR (CDCy 6 1.92 (AB quartet, J, = 

3.3 Hz, J2 = 7.9 Hz, 2H), 2.94 (AB quartet, J, = 3.4 Hz, = 7-9 Hz, 2H), 3.96 (s, 3H), 

6.80 (dd, J, = 0.8 Hz, = 8.3 Hz, 1H), 7.05 (dd, J, = 7.4 Hz, Jg = 0.6 Hz, 1H), 7.26 

(dt, = 7.5 Hz, J2 = 1.0 Hz, 1H), 7.38 (dt, = 1.2 Hz, Jg = 7.6 Hz, 1H), 7.68 (t, J = 

7.9 Hz, 1H), 7.81 (d, J =7.8 Hz, 1H), 8.10 (dd, J, =7.5 Hz, Jg = 0.7 Hz, 1H). IR (film) 

3008, 1589, 1573, 1465, 1298, 1265, 744 cm \ MS (CI) m/z 251, 205. HRMS m/z 

calculated for CigHi^NgO; 250.1106, measured 250.1105. ^'C NMR (CDCy 5 21.1, 

36.3, 53.0, 111.7, 115.5, 116.9, 121.0, 125.1, 126.3, 138.7, 142.9, 150.0, 153.8, 

163.1,175.4. TLC - not stable. 

2-[2-(5-Methoxy)pyridyl]-3-(2-phenylthloethyl)indole (111). To a 

solution of thiophenol (0.34 mL, 3.34 mmol) in 6 mL of THF was added BuLi (1.75 

mmol, 0.72 mL of a 2.4 M solution in hexanes) dropwise at -20 °C, and the solution 
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was stirred for 45 minutes. The thiophenoxide anion solution was added via 

cannula to the heterogeneous solution of compound (110) (0.418 g, 1.67 mmol) In 

4 mL of THF at -78 °C. The reaction was followed by TLC and quenched with 

saturated NaHCOg. The aqueous layer was extracted twice with ether, washed 

with brine and dried over Na2S04. The crude product was purified by flash column 

chromatography on neutral alumina using deoxygenated solvents (30:1 H:EA to 

7:1 H:EA) to afford 0.373 g (62 %) of a yellow oil which crystallized over time: mp 

83 - 84 °C. 'H NMR (CDCy 5 3.22 - 3.27 (m, 2H), 3.39 - 3.45 (m, 2H), 4.05 (s, 3H), 

6.66 (d,J = 8.2 Hz, 1H),7.06 (d, J=7.5 Hz, 1H), 7.12 - 7.60 (m, 10H), 9.18 (bs, 1H). 

IR (film) 3420, 1589, 1574,1469, 1025, 737 cm''. MS (CI) m/z 361. HRMS m/z 

calculated for CgiHigNgS; 360.1296, measured 360.1304. NMR (CDCy 5 25.5, 

34.0, 53.3, 108.8, 111.0, 113.2, 113.4, 118.9, 119.6, 123.3, 126.3, 128.9, 129.3, 

130.1, 132.1, 135.0, 136.1, 139.2, 147.9, 163.4. TLC (10:1 H:EA, alumina plates) R, 

= 0.51. 

7,12-Dihydroindolo[2,3-a]quinolizin-4(6H)-one (26). The following 

is a modification of a procedure by CoreyInto a sealed tube was placed 

compound (111) (0.357 g, 0.990 mmol), Nal (1.50 g, 9.90 mmol) in 5 mL of N,N-

dimethylfonnamide. Methyl iodide (2 mL) was added, and the solution heated at 

80 °C for 24 hours. The solvent was removed via vacuum distillation, and the 

remaining solid was dissolved in CH2CI2 and washed with water. The solution was 

dried over Na2S04 and concentrated. The crude product was purified by 

chromatographing over silica gel (CHCI3 to 20:1 CHCl3:MeOH) to give an off-white 

solid 0.116 g (80 %). ^H NMR (CDCg 5 3.11 (t, J = 7.1 Hz, 2H), 4.46 (t, J = 6.9 Hz, 

2H), 6.33 (dd, J, =7.1 Hz,J2=1.0 Hz, 1H), 6.53 (dd,J, =9.1 Hz, J2=1.1 Hz, 1H) 

7.15-7.42 (m, 4H), 7.59 (d, J =7.7 Hz, 1H) 8.37 (bs, 1H). IR (film) 3244, 2918, 

1651, 1568, 799, 741 cm \ MS (CI) m/z 237. HRMS m/z calculated for C15H12N2O: 

236.0950, measured 236.0944. ^^C NMR (CDCg 5 19.6, 40.4, 99.7, 111.6, 114.8, 
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118.5, 119.6, 120.7, 124.7, 125.9, 127.5, 137.8, 138.2, 138.5, 162.9. TLC (20:1 

CHCl3:MeOH) R, = 0.62. 

2-Bromo-6-(1,1-dimethylethoxy)pyridine (112). To a solution of 2,6-

dibromopyridine (4.01 g, 16.9 mmol) and 25 mL of fe/t-butanol was added 

potassium fert-butoxide (3.22 g, 28.7 mmol). The solution was heated at reflux for a 

period of 12 hours, during which the solution became totally homogeneous. The 

solution was quenched with saturated with NaHCOg and extracted with ether. The 

organic layer was washed with brine and dried over MgS04. After concentrating, 

the solution was distilled under vacuum to give 2.53 g (65 %) of a white solid that 

melts at room temperature. NMR (CDCy 81.58 (s, 9H), 6.57 (dd, = 8.3 Hz, Jg 

= 0.5 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 8.2 Hz 1H). IR (film) 2930, 1589, 

1548, 1434, 938, 785 cm '. MS(CI) m/z 231. NMR (CDCy 5 28.5, 80.9, 111.5, 

119.5, 137.7, 140.1, 163.0. TLC (20:1 H:EA) R, = 0.69. 

Spiro[cyclopropane-1,3'-(2'-[6-(1,1 -dimethylethoxy)]pyridin-2-

yl)-[3H]indole] (113). To a solution of 2-bromo-6-fe/t-butoxypyridine (112) 

(0.329 g, 2.30 mmol) in 9 mL of THF at -78 °C was added n-BuLi (2.30 mmol, 0.95 

ml of a 2.4 M solution in hexanes) dropwise. The solution was stirred for 1 hour at 

-78 °C. The imine (70) was added via cannula in 2 mL of THF, and the solution 

stirred for 1 hour. The mixture was quenched with saturated NaHCOg and 

extracted with ether. The combined organic layers were washed with brine, dried 

over Na2S04, and concentrated. The crude product was purified by flash column 

chromatography on neutral alumina using deoxygenated solvents (50:1 H:EA to 

10:1 H:EA) to afford 0.127 g (20 %) of a yellow oil. 'H NMR (CDCg 5 0.68 - 0.81 

(m, 2H), 1.08 -1.17 (m, 2H), 1.53 (s, 9H), 4.74 (s, 1H), 6.55 - 6.77 (m, 4H), 6.95 (d, J 

= 7.3 Hz, 1H), 7.06 (dt, J, = 7.6 Hz, = 1.1 Hz, 1H) 7.50 (t, J = 7.8 Hz, 1H). IR (film) 

3374, 2975, 1570, 1488, 1437, 739 cm \ MS (CI) m/z 295, 239, 210. '^C NMR 

(CDCgS 13.1, 17.3, 28.5, 30.2, 69.0, 79.3, 108.6, 111.6, 112.8, 118.3, 118.8, 
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126.6, 133.9, 138.6, 150.9, 158.8, 163.2. TLC (30:1 H:EA, alumina plates) R, = 

0.57. 
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CHAPTER 2. A SYNTHETIC APPROACH TO MS-444 

A paper to be submitted to the Joumal of Organic Chemistry 

George A. Kraus and John H. Malpert 

introduction 

In September of 1995 two researchers, Aotani and Saitoh, at the Tokyo 

Research Laboratories reported that they had characterized a novel natural 

product that possessed a rather unusual ring system.^ This compound, which had 

been given the name MS-444 (1), contained a unique 4(9H)-naphtho[2,3-

cjfuranone ring structure. This type of structure had only been reported in the 

literature twice before as an intermediate in the synthesis of aromatic ortho 

diketones.^ This was the first instance in which this particular structure had been 

isolated from natural sources. 

OH 

7 

6 
4a 

o 

(1) 

Shortly thereafter, during the revision of Saitoh's manuscript, Koyama and 

co-workers isolated several new compounds from the plant Aloe ferox.^ MS-444 

(1) was not one of the natural products discovered from this plant; however, three 

closely related analogs were. Among those derivatives was 5-hydroxy-3-methyl-
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naphtho[2,3-c]furan-4(9H)-one (2), which is almost identical to MS-444 except for 

the lack of a phenolic hydroxyl group at the 8-position. The second and third 

analogs which were isolated did not contain the 4(9H)-naphtho[2,3-c]furanone ring 

structure perse, but they were very similar in structure. One analog (3) contained 

an extra carbonyl at the 9-position as well as lacking the phenolic hydroxyl group. 

The other derivative (4) contained a dihydrofuran moiety where the double bond 

had migrated to the 9-9a position. As of this date, compounds (1) and (2) are the 

only compounds isolated from nature which contain the 4(9H)-naphtho[2,3-

c]furanone ring system. 

OH 
OH O 

(2) (3) 

OH 0 

(4) 

Originally, MS-444 (1) had been isolated in the same Tokyo Research 

Laboratories by five different researchers." These researchers were screening the 

culture broth of a bacterial strain KY7123, which was taken from a soil sample 

collected in Okinawa, Japan. They discovered the compound, and they were the 

ones responsible for designating it as MS-444 (1). The bacterial strain was 

eventually identified from its cultural and morphological characteristics as 

Micromonospora sp. In a typical procedure, 15 liters of bacterial culture gave 

approximately 100 mg of pure MS-444 (1), after extraction, purification by three 

different silica gel chromatographies and then crystallization. These researchers 
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also discovered that MS-444 (1) had biological activity as It Inhibited myosin light 

chain kinase. 

Myosin light chain kinase is a regulatory enzyme in smooth muscle 

contraction.®® Contraction stimuli, such as hormones and neurotransmitters, 

Increase the concentration of Ca^* in the cytoplasm and activate calmodulin. 

Calmodulin is a protein which binds Ca^"" In smooth muscle cells. When Ca^"^ is 

bound, this protein activates myosin light chain kinase, which in tum catalyzes 

transfer of y-phosphate of ATP to Ser-19 of 20-kDa myosin light chain. The 

phosphorylated myosin then interacts with actin to generate force for the 

contraction. This contractile property of smooth muscle cells Is a major determinant 

of vascular tone and diameter of the bronchial tubes. Therefore, myosin light chain 

kinase inhibitors, such as MS-444 (1), could be potential vasodilators or 

bronchodllators.'' 

NakanishI and co-workers showed that MS-444 (1) inhibited Ca^* and 

calmodulin-dependent activity of smooth muscle myosin light chain kinase In a 

concentration-dependent manner. The concentration that was needed to inhibit 

the enzyme activity by 50 % (ICgo) was 10 n.M. This Is moderate when compared to 

other myosin light chain kinase inhibitors that have been reported. In addition, 

NakanishI reports that MS-444 (1) has no antimicrobial activity at a concentration 

of 100 p.g/mL.'' 

Results and Discussion 

We became interested in MS-444 (1) because of its unique chemical 

bonding structure and inherent biological activity. At first we envisioned a 

photosynthetic pathway (Scheme I) to MS-444 (1). The final molecule would come 

from a precursor such as (5), which is the product of a tandem 

photoenollzation/[4+2] cycloaddition reaction that has been well-studied in our 

group.^ We had hoped that oxidation of a compound such as (5) would do two 

things. The first would be to oxidize the benzylic alcohol to the ketone needed in 
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MS-444 (1). The second would be to oxidize the primary aliylic alcohol to the 

corresponding aldehyde, which should cyclize to hemiacetal and provide the 

desired furan upon elimination of water. The precursors to intermediate (5) would 

be molecules (7) and (8), which are easily synthesized from available materials. 

Scheme 

OH O 

-r > 

OMe 

OMe O 

OMe OH 

(5) 

\ / 
V 

/ 
.OH 

-f-

oA. 

(8) 

We began the synthesis (Scheme II) by making compound (8) from 

propargyl alcohol (9) following the procedure of Duranti.® Propargyl alcohol (9) 

was first protected as its tetrahydropyranyl ether. This compound was then 

deprotonated with n-BuLI and quickly quenched with acetic anhydride to form 

compound (8) in a rather modest yield. On the other hand, compound (7) was 

prepared by treating 2,5-dimethoxybenzyl alcohol with n-BuLi and quenching with 

methyl iodide. Oxidation of the alcohol lead to the desired aldehyde (7). 
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Scheme II 

OH 
/ 

OMe OH 

1) H: PHP 
2) n-BuLI/ 

AC2O 

1) n-BuLi 
2) Mel 
3) PCC 

X 
OH 

O^ 

(8) 

OMe O 

With compounds (7) and (8) in hand, we proceeded with the key photolysis 

reaction (Scheme III). We knew that a compound such as (5) would be prone to 

undergo elimination of the benzylic alcohol to provide a naphthalene compound 

such as (11) so extra care was taken to prevent such a sequence of events from 

occurring. However, after photolyzing compounds (7) and (8), we were surprised 

to find that neither the desired intermediate (5), nor the napthalene compound 

(11), was isolated. The compound which we did isolate was never identified, but it 

did not contain a furan ring or even a hydroxymethylene moiety. In addition, no 

naphthalene protons were visible in the ^H NMR, leaving a puzzling mystery. 

Because of the discouraging results from the tandem photoenolization/Diels-

Alder strategy, we decided to focus on a different approach. The retrosynthetic 

analysis can be seen in Scheme IV. We envisioned that the furan ring of MS-444 

(1) could be formed from a precursor such as compound (12) via a novel silver-

mediated cyclization that we had developed in our group several years ago.® In the 

previous example, the cyclization had occurred intermolecularly by reacting an 

alkene with a p-keto ester. This new chemistry which we were proposing would be 
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Scheme III 

OMe 

OMe O 

+ 
/ 

OH 

O^ 

(8) 

OMe OH ' 

(5) 

OMe 

OMe O 

+ 
/ 

OH 

O^ 

(8) 

a natural extension involving an intramolecular version of the aforementioned 

reaction. Compound (12) would in turn be prepared from an intermediate such as 

compound (13) via a Baker-Ventkataraman reaction. Compound (13) would come 

from the readily available 2',5'-dihydroxyacetophenone (14) via a regioselective 

Claisen rearrangement. Once again, both of the aforementioned reactions, the 

Baker-Venkataraman^° and the regioselective Claisen,"-had precedent within 

our group. 

Starting with 2',5'-dihydroxyacetophenone (14), we were able to selectively 

allylate the phenol at the 5-posltion to get compound (15) in 69 % yield. This 

compound was then heated at 210 °C to selectively provide compound (13) in 60 

% yield. 
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Scheme IV 
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OH OH 

OH O 

(14) 

K2CO3 ^ 
allyl bromide 
69% 

A 

OH O 

(13) 

OH O 

(15) 

At this point, we needed to acetylate both of the phenols to position 

ourselves for the Baker-Ventkataramann reaction. Treating the diphenol (13) with 

an excess of triethylamine and quenching with acetyl chloride provided the 

diacetate (16) in 74 % yield. However, subjecting the compound (16) to the 

conditions of the Baker-Ventkataramann reaction did not provide any of the desired 

butanedione (17). 

OH O OAc O OH O OH 

We felt that the acidic protons of the acetate at the 5-position may have been 

contributing to the failure of our reaction. Therefore, we decided to reverse the 

steps of our sequence, doing the Baker-Ventkataramann reaction before the 

Claisen rearrangement. By doing this, we were able to use the allyl group as a 

protecting group and then incorporate the protecting group into the molecule, 

thereby improving the efficiency of our synthetic sequence. 

(13) (16) (17) 
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Therefore, we treated compound (15) with sodium hydride and acetyl 

chloride to obtain the acetate. Treating the acetate with potassium tert-

butoxide/fe/t-butanol affimied our assumptions as we were able to isolate the 

desired butanedione (18). Unfortunately, the yield was too low to be synthetically 

useful, and the decision was made to try other ways to make compound (18). 

OH O 

1) NaH/AcCI 
58% 

2) KO-f-Bu/f-BuGH 
34% OH O OH 

The first method that we tried involved generating the dianion of compound 

(15) and quenching with acetaldehyde to form the |3-hydroxyketone (19) in an 

acceptable 81 % yield. However, a variety of oxidation conditions, including POO 

and Jones oxidation conditions, failed to give the desired butanedione (18), and 

once again we were forced to find another route to compound (18). 

1^ 2 equiv LD^ 
2) acetaldehyde 

81 % 

OH O OH OH O 

(15) (19) (18) 
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We were able to find a somewhat acceptable solution using the acyl cyanide 

chemistry developed by Howard and co-workers/^ Treating the acetophenone 

(15) (Scheme V) with two equivalents of lithium diisopropylamide and quenching 

with pyruvonitrile provided the desired 1,3-butanedione (18) in a modest 45 % 

yield. The allyl ether (18) was then subjected to the conditions of the Claisen 

rearrangement to provide compound (20) in 77 % yield. The reaction appeared to 

be completely selective in that none of the regioisomer with the allyl group at the 6-

position was isolated. 

Scheme V 

1) 2 equiv LDA .. 
2) pyruvonitrile [I 

44% 

OH O OH O 

(15) (18) 

OH O OH 

A92OO2 

OH O 

At this point, we were ready to try our silver-mediated cyclization reaction.® 

However, treating compound (20) (Scheme V) with freshly prepared silver 

carbonate did not generate the furan ring system as we had hoped. Only 

decomposition of the starting material occurred, and no useful products were 
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obtained from the reaction mixture. We had realized beforehand that oxidation of 

the hydroquinone moiety by the silver carbonate was a potential hazard to the 

success of our reaction, and unfortunately, we were unable to overcome this 

obstacle. Therefore, we decided to seek another altemative route. 

At the same time that we were working on this project, we were also trying to 

make a highly functionalized furan in another one of our research endeavors. 

Upon exploring the furan chemistry developed by Hanson and co-workers,^"* we 

realized that we could synthesize a furan, such as compound (22) (Scheme VI), 

from the readily available ethyl acetoacetate (24) and 1,3-dihydroxyacetone (25). 

A furan with the appropriate leaving group as the X group could then be coupled 

with a metallated aryl ring (23) to forni a compound such as (21). Cyclization of 

(21) could then be promoted by Friedel-Crafts conditions to provide MS-444 (1). 

In 1965 Hanson and co-workers made a series of trisubstituted and 

tetrasubstituted furans (28) by reacting acyloins (26) with a variety of p-ketoesters 

(27) and zinc chloride in refluxing ethanol. However, in all cases R\ R^, and 

were either alkyi groups or aryl groups, and no attempt was made to functionalize 

any of the three substituents. 

OB Jl \ 

(26) (27) (28) 

o 

OEt 

We tried to extend this chemistry by manipulating the R^ group so that it 

would contain a functional group at the 4-position of the corresponding 3-furoate 

ester. We planned to use the symmetrical 1,3-dihydoxyacetone (25) as our acyloin 

to accomplish this feat. Using ethyl acetoacetate (24) as its counterpart would give 

us the furan (29) with the appropriate functionality at the 4-position. Upon trying 
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Scheme VI 

OH O 
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(24) (25) 
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this reaction (Scheme VII), we were pleased to discover that it gave the desired 4-

hydroxymethylfuran (29) in almost quantitative yield. However, in contrast to the 

conditions specified by Hanson, this reaction could not be refluxed in ethanol as 

polymerization to the polyester tended to occur. The best yields were obtained 

when the reaction was allowed to run at room temperature over a period of two 

days, instead of refluxing for four hours as reported by Hanson.^'* The hydroxy 

group was then further manipulated by treating compound (29) with phosphorus 

tribromide to give the bromide (30) in 72 % yield. This compound was now set for 

the key coupling reaction with the metallated aryl ring. 

Scheme VII 

O 0 0 

HO. 

(25) (24) 

-EBra 
72% o 

^3 

(30) 

Our next endeavor was to design an appropriately protected hydroquinone. 

We originally chose the tetrahydropyranyl protecting group because of its simplicity 

to make and the mild conditions needed for its removal. Compound (31) was 

easily made from hydroquinone in near quantitative yield. Metallation with n-BuLi 

to provide the lithiated derivative (32) was a known procedure.^® However, upon 

treating compound (32) with the bromide (30), no reaction occurred. 
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OTHP 

OTHP 

n-BuLi 

OTHP 

OTHP 

(30) 

OTHP 

OTHP 

OTHP 

COoEt 
OTHP OTHP 

(34) (33) 

We then tried to couple the bromide (30) with the higher order cyanocuprate 

(34), according to the conditions of Lipshutz/® Once again we met with failure as 

none of the desired compound (33) was isolated. 

We then decided that maybe the bulky tetrahydropyranyl protecting group 

was preventing the electrophile from approaching the aryl ring. Therefore, we 

decided to switch protecting groups from the tetrahydropyranyl ether to the much 

smaller methyl ether protecting group. Once again we attempted to couple the 

bromide (30) with the higher order cyanocuprate derived from 1,4-

dimethoxybenzene (35), and this time we met with success as the desired 

compound (36) was isolated in 96 % yield based on recovered starting material. 

Unfortunately, the reaction only proceeded in typically 40 % conversion under a 

variety of conditions. 
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Cu(CN)Li2 

OMe 

OMe 

(35) (30) (36) 

We next tried to directly convert compound (36) to the cyclized compound 

(37). To do this, we employed a wide variety of Friedel-Crafts conditions such as 

concentrated sulfuric acid and aluminum chloride. However, we were 

unsuccessful in all of these attempts, and we were forced to use a somewhat 

longer route to achieve the desired 3-methyl-(9H)-naphtho[2,3-c]furan-4-one ring 

system. 

OMe OMe 

Q Friedel-Crafts 

OMe OMe O 

(36) (37) 

To achieve cyclization to compound (37), we had to resort to a two-step 

procedure where we first converted the ethyl ester (36) to its corresponding 

carboxylic acid (38) by refluxing it in methanolic potassium hydroxide. Cyclization 

of the acid (38) was then achieved by making the mixed anhydride with 

trifluoroacetic anhydride and treating that compound in s/fu with tin(IV) chloride to 

give compound (37) in 50 % overall yield. 



www.manaraa.com

61 

OMe OMe OMe 

KOH 
9 5 %  

1) (CF;,CO)pO 
SnCU 

OMe O 

O 

OMe OMe 

(36) (38) (37) 

The last step was to remove the methoxy ethers to provide MS-444 (1). 

Unfortunately, this proved to be harder than anticipated as traditional methods'® 

failed to provide any of the desired product (Scheme VII). Boron tribromide gave 

decomposition products as did sodium cyanide in DMSO at 135 °C. Aluminum 

trichloride in ethyl thiol also produced no desired product. The only reagent that 

did not produce decomposition products was trimethylsilyl iodide, which removed 

only one of the methyl ethers. A large excess of trimethylsilyl iodide did not 

improve the situation, but only led to decomposition of starting material. In addition, 

all attempts at achieving the hydroquinone through oxidation, followed by 

reduction, met with failure. Oxidation of the dimethyl ether with ceric(IV) ammonium 

nitrate followed by reduction with sodium hydrosulfite led to oxidation at the 

benzylic methylene. Oxidation with silver(ll) oxide led to decomposition of the 

starting material. 

At this point, we decided to report the synthetic sequence which we had 

devised rather than retuming to the beginning and making changes. It is 

conceivable that the same synthesis could be done using a different protecting 

group on the phenols. Hopefully, these new protecting groups would be easier to 

remove, allowing for a successful total synthesis of MS-444 (1). The 

methoxymethyl ether would probably be the best choice for replacing the methoxy 

protecting groups because they are similiar in structure and easier to remove. 
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Scheme VIII 
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Conclusions 

We have developed a short route towards the 3-methyl-(9/y)-naphtho[2,3-

c]furan-4-one ring structure of l\/IS-444 (1) and are very close to completing a total 

synthesis of that molecule. In addition, we have developed a pathway to the 

synthesis of a highly functionalized trisubstituted furan. With a few subtle changes 

in our route, such as trying a different protecting group on the hydroquinone, a 

complete total synthesis of MS-444 could be achieved in the future. 

Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers 

and used without additional purification. Diethyl ether and tetrahydrofuran (THF) 

were distilled from sodium benzophenone ketyl. Benzene was distilled from lithium 

aluminum hydride. Toluene and methanol were distilled from sodium. 

Dichloromethane (CHgCy, and acetonitrile were distilled from calcium hydride. All 

reactions were conducted under an argon atmosphere and all extracts were dried 

over anhydrous sodium sulfate or anhydrous magnesium sulfate. Apparatus for 

experiments requiring anhydrous conditions were flame-dried under a stream of 

argon or dried in a 150 °C oven for 12 hours and cooled under a stream of argon. 

Alumina chromatography was conducted using activated neutral aluminum oxide, 

Brockmann I, standard grade (150 mesh), which was purchased from Aldrich 

Chemical Company. Silica gel chromatography (sgc) was performed on EM 

Science Kieselgel 60 (mesh 230-400). Thin layer chromatography (tic) was 

perfomied using EM Science Kieselgel F254 prepared plates with a thickness of 

0.25 mm. The solvent systems were suitable mixtures of hexanes (H) and ethyl 

acetate (EA) unless othen/vise noted. Infrared spectra were obtained on a Perkin-

Elmer 1320 spectrophotometer and are reported in crr\\ Proton nuclear magnetic 

resonance spectra (300 MHz) were obtained using a Nicolet Magnetics 

Corporation NMC-1280 spectrometer. All chemical shifts are reported in 6 relative 

to tetramethylsilane as an intemal standard. Splitting patterns are designated as s 

(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of 
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triplets), and m (multiplet); the addition of br indicates a broadened pattern. 

Carbon-13 NMR spectra (75.46 MHz) were obtained on a Nicole NMC-1280 

spectrometer and are reported in 5 relative to CDCI3 (77.00 ppm) as an internal 

standard. High resolution mass spectra (HRMS) were obtained on a Kratos model 

MS-50 spectrometer. Low resolution mass spectra (MS) were obtained on a 

Finnigan 4023 mass spectrometer. The purity of all title compounds was 

determined to be > 90 % by ^H NMR spectral determination. 

Ethyl 4-(hydroxymethyl)-2-methyl-3-furoate (29). This procedure is 

a slight modification of Hanson's procedure.^'* To a solution of ethyl acetoacetate 

(6.81 g, 52.3 mmol) in 50 mL of ethanol (200 proof) was added 1,3-

dihydroxyacetone dimer (7.07 g, 39 mmol). The heterogeneous solution was then 

stirred for 15 minutes while the ZnClg was being fused, to dissolve most of the 1,3-

dihydroxyacetone dimer. The ZnClg (7.12 g, 52.3 mmol) was added at room 

temperature, and the solution stirred for a period of one day and monitored by TLC. 

Generally, more ZnClg (1-1.25 equivalents) had to be added to ensure that the 

reaction went to completion. The solution was then concentrated and dissolved in 

ether. The organic solution was washed with water and brine then dried over 

Na2S04. Concentration provided 9.64 g (100 %) of a crude yellow liquid that was 

typically pure enough for immediate use. Attempts to purify by silica gel or alumina 

chromatography resulted in a large reduction of yield (15 %). Attempts to purify via 

vacuum distillation led to loss of water and formation of what was believed to be the 

corresponding polyester. This compound is stable for months if kept in the freezer; 

otherwise polymerization is bound to occur. ^H NMR (CDCy 5 1.35 (t, J = 7.1 Hz, 

3H), 2.51 (s, 3H), 4.31 (q, J =7.1 Hz, 2H), 4.52 (s, 2H), 7.19 (s, 1H). IR (neat) 3446, 

2982, 1714, 1610, 1434, 1103, 737 cm \ MS (CI) m/z 185, 137,109. HRMS m/z 

calculated for CgH^A: 184.0736, measured 184.0735. '^C NMR (CDCg 5 14.3, 

14.5, 55.8, 60.8, 112.8, 120.0, 138.2, 160.8, 165.3. TLC (4:1 H:EA) R, = 0.27. 
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Ethyl 4-(bromomethyl)-2-methyl-3-furoate (30). To a solution of 

alcohol (29) (2.93 g, 15.9 mmol) at 0 °C in 15 mL of ethyl ether was added PBrg 

(0.76 mL, 7.95 mmol) dropwise via syringe. The solution was then stirred at 0 °C 

and monitored by TLC. When reaction was complete, the solution was quenched 

with ice, and the aqueous layer extracted twice with ether (30 mL). The combined 

organic layers were washed with brine and dried over Na2S04. The solution was 

then concentrated to give 2.81 g (72 %) of a crude yellow oil that was typically pure 

enough for immediate use. As in the case of the corresponding alcohol (29), all 

attempts at purification met with failure. It should be noted that this compound is a 

powerful lachrymator and should be kept in the hood at all times. 'H NMR (CDCy 

5 1.39 (t, J = 7.1 Hz, 3H), 2.55 (s, 3H), 4.34 (q, J = 7.2 Hz, 2H), 4.56 (s. 2H), 7.35 (s, 

1H). IR (neat) 2982, 1715, 1567, 1465, 1380, 1297, 1101, 673 cm \ MS (CI) m/z 

247, 202, 184, 167. NMR (CDCy 5 14.0, 14.1, 23.0, 60.2, 111.9, 122.9, 140.2, 

160.9, 163.5. TLC - not stable. 

Ethyl 4-(2,5-diniethoxyphenyl)methyl-2-methyl-3-furoate (36). To 

a solution of 1,4-dimethoxybenzene (3.15 g, 22.8 mmol) in 50 mL of THF at 0 °C 

was added n-BuLi (22.8 mmol, 9.67 mL of a 2.36M solution in hexanes) dropwise 

via syringe. The solution was stirred at 0 °C for one hour. Copper(l) cyanide (1.02 

g, 11.4 mmol) was added rapidly at 0 °C. The solution usually had to be warmed to 

room temperature for a brief period of time to ensure a homogeneous solution. 

After one hour, the dark green solution was cooled to -78 °C, and the ethyl 4-

(bromomethyl)-2-methyl-3-furoate (30) (2.81 g, 11.4 mmol) was added in 10 mL of 

THF via cannula. The solution was allowed to warm to room temperature 

overnight. The anion was quenched with water, and the solution extracted with 

ether. The combined organic layers were washed with brine and dried over 

Na2S04. The crude material was purified over silica gel via flash column 

chromatography (13:1 H:EA) to give 1.00 g of a yellow oil. A large quantity of the 

starting 1,4-dimethoxybenzene was also recovered. The yield based on recovered 
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starting nnaterial was 96 % with a conversion of 30 %. Longer reaction times 

resulted in no significant increase In percent conversion. NMR (CDCy 6 1.25 (t, 

J = 7.1 Hz, 3H), 2.54 (s, 3H), 3.72 (s, 3H), 3.78 (s, 3H), 3.91 (s, 2H), 4.23 (q, J = 7.1 

Hz, 2H), 6.69 - 6.81 (m, 4H). IR (neat) 2981, 1713, 1500, 1097, 942 cm \ MS (CI) 

m/z 305, 259, 227. HRMS m/z calculated for Ci7H2oOs: 304.1311, measured 

304.1303. "C NMR (CDCg 5 13.8, 14.0, 24.9, 55.1, 55.5, 59.4, 110.7, 110.8, 

112.8, 116.0, 124.1, 129.6, 138.6, 151.3, 153.2, 159.9, 164.1. TLC (7:1 H:EA) R,= 

0.44. 

4-(2,5-Dimethoxyphenyl)methyl-2-methyl-3-furoic acid (38). 

Compound (36) (0.210 g, 0.690 mmol) was dissolved in 5 mL of a methanol/water 

solution of potassium hydroxide. (The potassium hydroxide solution was prepared 

by adding 35 g of potassium hydroxide to 25 mL of water and then diluting to 100 

mL with methanol). The reaction mixture was heated to reflux for a period of 12 

hours. The solution was then acidified with 6N HCI and extracted with ether. The 

organic layers were combined, washed with brine and dried over MgS04. 

Concentration gave 0.175 g (92 %) of a white solid: mp 152-154 °C. NMR 

(CDCg 5 2.59 (s, 3H). 3.75 (s, 3H), 3.78 (s, 3H). 3.96 (s, 2H), 6.72 - 6.82 (m, 4H). 

IR (film) 3048, 2917, 1676, 1504, 1233, 1116, 805 cn\ \ MS (CI) m/z 276, 259, 227. 

HRMS m/z calculated for CigHigOg: 276.0998, measured 276.0992. ^^C NMR 

(CDCI3) 5 14.6, 25.2, 55.5, 56.0, 111.4, 111.5, 112.3, 125.1, 129.6, 139.0, 151.7, 

153.4, 162.0, 170.5. TLC (4:1 H:EA) R, = 0.36. 

5,8-Dimethoxy-3-methyl-(9H)-naphtho[2,3-c]furan-4-one (37). 

Following the procedure of Kraus,^^ the carboxylic acid (38) (0.617 g, 2.23 mmol) 

was dissolved in 10 mL of methylene chloride. The solution was cooled to 0 °C 

and the trifluoroacetic anhydride (0.63 mL, 4.47 mmol) was added neat via syringe. 

This solution was stirred for 30 minutes. The tin(IV) chloride (6.7 mmol, 0.67 mL of 

a 1M solution in CHjCy was added dropwise, and the reaction monitored by TLC. 
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The reaction was quenched with saturated NaHCOg and extracted with CHgClg. 

The combined organic layers were washed with brine and dried over Na2S04. The 

crude material was purified over silica gel via flash column chromatography (4:1 

H:EA to 2:1 H:EA) to give 0.283 g (50 %) of a pale yellow solid: mp 132-134 °C. 

The product is somewhat sensitive and should be stored under an argon 

atmosphere in the freezer. NMR (CDCIg) 5 2.61 (s, 3H), 3.71 (s, 3H), 3.76 (s, 

2H), 3.81 (s, 3H), 6.74 (d, J = 9.0 Hz, 1H), 6.87 (d, J = 9.0 Hz, 1H), 7.12 (s, 1H). IR 

(film) 3102, 2915, 1653, 1559, 1471, 1253, 1080 cm \ MS (CI) m/z 259, 243. 

HRMS m/z calculated for C15H14O4: 258.0892, measured 258.0895. "C NMR 

(CDCl3)613.5, 19.3, 55.4, 56.1, 110.1, 114.2, 117.8, 120.6, 122.9, 131.6, 134.5, 

150.1, 154.9, 156.6, 182.2. TLC (3:1 H:EA) R, = 0.39. 
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CHAPTER 3. A SYNTHETIC APPROACH 

TO HALENAQUINONE 

A paper to be submitted to the Journal of Organic Chemistry 

George A. Kraus and John H. Malpert 

Introduction 

In the last two decades discoveries in the field of marine natural products 

chemistry have yielded a vast array of novel secondary metabolites. Structure 

classes arising from a variety of biosynthetic pathways have been discovered, and 

many of these classes are unique to the marine environment. One class of marine 

metabolites that has received considerable attention from the scientific community 

is the one that involves the mixed biogenesis of a sesquiterpene unit with either a 

quinol or quinone. These marine sesquiterpenes have mainly been isolated from 

sea sponges, although examples have also been found in brown algae and 

gorgonians. 

Over the past two decades, over 100 of these structures containing the 

quinol or quinone moiety have been reported in the literature. Unfortunately, in 

some cases, the absolute stereochemistry of these marine metabolites was pooriy 

documented. This has lead to some structures being assigned a certain 

stereochemical structure that was not based on experimental evidence, but due to 

a "stereochemical bias" that was perpetuated by the previous chemical literature. 

Fortunately, a recent review by Capon addresses these aforementioned issues.^ 

In 1983 Clardy and co-workers isolated and characterized the structure of a 

new pentacyclic polyketide from tropical marine sponges.^ They gave the name 

halenaquinone (1) to this structure, and they claimed that its pentacyclic system 

was the first of its kind. At the time, the closest literature analog which they could 

find was benzo[cc(]naphth[2,3-/]indole-4,7,12(5H)-trione (2). However, they did not 
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define halenaquinone's absolute stereochemistry at that time. Clardy and co­

workers then proceeded to test the compound for biological activity. They found 

that halenaquinone possessed in vitro antibiotic activity against Staphylococcus 

aureus and Bacillus subtilis. 

(1) (2) 

In 1985 Nakamura and co-workers isolated and characterized another 

bioactive metabolite from the Okinawan sea sponge Xestospongia sapra? This 

structure was identical to halenaquinone (1) with the exception of missing a 

carbonyl at the 3-position. Once again, as in the case of halenaquinone (1), the 

absolute stereochemistry was left undefined. They named this compound 

xestoquinone (3) and proceeded to study its biological activity. They found that 

xestoquinone (3) showed powerful cardiotonic activity and showed a marked 

inotropic action. It also caused a concentration-dependent inhibitory effect on the 

Na,K-ATPase isolated from pig cerebral cortex. Xestoquinone was the first 

example of a marine natural product that showed these aforementioned 

characteristics. 

O O 

(3) 
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In 1992 researchers at the University of California, Santa Cruz working 

jointly with workers in private industry at Syntax Research, studied the biological 

effects of halenaquinone (1), xestoquinone (3) and several other non-natural 

analogs." Specifically, they were studying the effects of these compounds as 

protein tyrosine kinase inhibitors. Enhanced protein tyrosine kinase (PTK) activity 

has been linked with proliferative diseases, such as cancer and psoriasis.® Both 

the receptor types and cytoplasmic types of PTKs have been associated with 

cancer found in humans. This family of enzymes is also involved in the regulation 

of both cellular growth and signaling. Therefore, it is believed that compounds 

which inhibit PTK activity could be developed into new chemotherapeutic agents. 

These researchers examined the effects halenaquinone (1) and its related 

analogs had on the protein tyrosine kinase activity of ppSO"'®"^, the transforming 

gene product of the Rous sarcoma virus. Halenaquinone (1) proved to be a potent, 

irreversible inhibitor of the aforementioned enzyme. Halenaquinol (4), the 

corresponding hydroquinone, was also as potent as its parent compound. The IC50 

of halenaquinone (1) was found to be 1.5 ^iM, while the IC50 of halenaquinol (4) 

was found to be 0.55 jiM. These two compounds (1) and (4) are among some of 

the most potent kinase inhibitors reported to date. In fact only two other 

compounds are known to inhibit PTK activity, and they are aeroplysinin (5), and 

melemeleone (6)." Surprisingly, xestoquinone (3) was considerably less active 

than the other two compounds (1) and (4). In addition halenaquinone (1) also 

inhibited the ligand-stimulated tyrosine kinase activity of the human epidermal 

growth factor receptor with an IC50 of about 19 ^M. 
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N 

SO3H 

(5) (6) 

In addition to determining the biological activity of these halenaquinone 

analogs, these California researchers also synthesized several quinone analogs to 

determine which functional groups were needed to produce PTK inhibition. They 

found that replacing the oxygens of the napthoquinone with chlorines completely 

destroyed any inhibitory effects. They also concluded that the furan ring moiety 

was essential to inhibition as replacement of it with a benzene ring negated 

inhibition. They concluded that since halenaquinone (1) is a potentially good 

Michael acceptor, attack by nucleophiles at crucial positions of its structure may be 

what causes the anti-proliferative activity. This theory was supported by following 

work, although the authors admit that the details are still a little sketchy.'' ® 

In 1993, Tsuji and co-workers at Hokkaido University in Japan discovered 

that halenaquinone (1) and xestoquinone (3) were potent inhibitors of 

Topoisomerase I purified from the nuclei of the mouse leukemic cells L1210.® 

Topoisomerase I and Topoisomerase II are important targets for antitumor agents. 

Both compounds (1) and (3) were also found to be cytotoxic to several different 

types of leukemic cells. 



www.manaraa.com

73 

Although haienaquinone (1) was originally characterized in 1983, its 

absolute stereochemistry was not assigned until 1988/ It was at this time when 

Harada and co-workers synthesized (+)-halenaquinone and (+)-halenaquinol, and 

they detennined that the absolute stereochemistry at the lone chiral center was (S). 

Since that time, only one other synthesis of haienaquinone (1) has been totally 

completed and that was by Shibasaki and co-workers.® In addition, another 

approach to the haienaquinone ring system has appeared by Keay and co­

workers.® However, they did not successfully finish the whole molecule. 

Harada began his synthesis (Scheme I) with optically pure (8a,R)-(-) 

Wieland-Mlescher ketone (7)7 Using known procedures, he selectively protected 

the non-allylic ketone and then reduced the enone, trapping the corresponding 

enolate with trimethylsilyl chloride in 92 % yield to give (8). With compound (8), he 

fomied the appropriate enolate and hydroxymethylated it by treating it with 

formaldehyde. After selectively reducing the ketone to the axial alcohol, he 

removed the acetal protecting group in excellent yield to give (9). Transfomriation 

of the ketone (9) to the hydrazide and elimination gave the corresponding alkene 

in quantitative yield. The diol was then protected as its 1,3-dioxane to give (10) in 

86 % yield. Compound (10) was then oxidized at the allylic position to give enone 

(11) in 63 % yield. 

The next phase of the synthesis called for the synthesis of a 

benzocyclobutene, which would eventually be used in a thermal [4+2] 

cycloaddltlon. Harada (Scheme II) began with 2,3-dimethyl-1,4-dimethoxybenzene 

(12) and dibrominated at the benzylic position using NBS to give (13). The 

dibromo compound (13) was then treated with sodium sulfide to give the 

corresponding cyclic sulfide which was oxidized to the sulfone (14). Thermolysis 

of compound (14) gave the desired benzocyclobutene (15) in 48 % yield. 
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Scheme 

(7) 

1) 2-ethyl-2-methyl-
1,3-dioxolane, p-TsOH 

2) Li, NHg 
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TMSO 

1) MeLi/ 
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2) Li(seo-Bu).^BH 
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3) H2O, p-TsOH 
98% 

1) p-toluenesulfon-
hydrazide 

2) MeLi, 100 % 

3) acetone, p-TsOH 
86% 

HoC 

CrQa ) 
3,5-dimethyl-
pyrazole 

(10) (11) 
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Scheme II 
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(12) 

CH,0 
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CH^O 

A 
'2 

48% 

CH3O CH3O 

(15) (14) 

In Scheme III, Harada combines the benzocyclobutene (15) and the enone 

(11), which were made previously in Schemes I and II, and heats them together to 

fonn the cycloadduct in a disappointing 33 % yield. The cycloadduct was then 

aromatized to the naphthalene (16) with 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone (DDQ) in 89 % yield. Treatment of compound (16) with base and 

then bubbling oxygen through the solution gave the dione (17) in excellent yield. 

The 1,3-dioxane was then deprotected, and the resulting triol was oxidized and 

cyclized to the pentacyclic furan (18) in 44 % yield over two steps. Oxidation of 

compound (18) gave halenaquinone (1) in 45 % yield. 

Although the synthesis of Harada's was a terrific achievement, a couple of 

improvements could be made. The first disappointment was the low yield of the 

[4+2] cycloaddition (33 %), causing a great deal of starting material to be lost. The 

second criticism of Harada's synthesis was that he put in quite a few chiral centers 

only to remove them later in the synthesis, thus lowering the efficiency of the 

synthetic route. However, his synthesis was the first, and nobody would match his 

accomplishment for another eight years. 
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Scheme III 

(15) + (11) 
A, 33 % 

2) DDQ, 89 % 

1) KO-f-Bu, 
O2, 88 % 

1)60%AcOH 

2) DMSO, DCC 
TFA, pyr 
44 % over 2 steps 

(1) 

The second total synthesis of halenaquinone (1) was done in 1996 by 

Shibasaki,® who used a novel cascade Suzuki cross-coupling and asymmetric 

Heck reaction as his key step (Scheme IV). Shibasaki began his synthesis with the 

commercially available 6,7-dimethoxy-1-tetralone (19), which he converted to 

compound (20) in a series of five protection and deprotection reactions in 58 % 

yield over the five steps. Treatment of compound (20) with triflic anhydride and 

pyridine produced the triflate (21) in near quantitative yield. The ditriflate (21) was 

then subjected to the alkylborane (22), which had been synthesized in several 
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steps via known procedures, under palladium-catalyzed conditions. The ditriflate 

(21) underwent Suzuki coupling and then cyclized via an asymmetric Heck 

reaction with 85 % ee in 20 % yield. The low yield was disappointing, but the 

cascade of reactions was impressive nonetheless. 

Scheme IV 

OCH 

OCH. 

OCHc 

(19) 

OCH 

1)Tf20 
Pyr. 
99% 

OTf 

OTf 
TBDPSO 

OCH 

(22) 

^̂ .ô -^^^OTBDPS 

1)Pd(0Ac)p 
(S)-BINAP 
K2CO3, 20 % 

OCH3 

(23) 

A longer six step sequence from compound (20) to compound (23) was also 

devised. This involved protecting one of the phenols, converting the other to a 

triflate, and proceeding with the Suzuki coupling. The phenol was then 

deprotectsd, converted to a triflate, and then subjected to the conditions of the 

asymmetric Heck reaction. This step-wise pathway led to an overall 87 % ee in 29 

% yield. 
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Having developed a pathway to an intermediate which contained the only 

chiral center of halenaquinone (1), Shibasaki went about finishing the pentacyclic 

skeleton. He deprotected the silyl enol ether (Scheme V) and reduced the 

corresponding aldehyde with sodium borohydride in 93 % yield over two steps. 

The alcohol was then converted to the p-nitrobenzyl ester to give compound (24) in 

96 % yield. He then converted the p-nitrobenzyl ester into a triflate and reacted that 

triflate with an acyl anion equivalent to give compound (25) in 68 % yield. He then 

proceeded to protect the ketone and the alkyne in excellent yields. Benzylic 

oxidation with DDQ gave him the tricyclic ketone (26) in 96 % yield. 

Scheme V 

OCH 

1) BU4NF 
(23) 2) NaBH4. 93%̂  

for 2 steps 
3) 4-nitrobenzoyl 

chloride, NEta, 
DMAP, 96 % 

OCH, 

(24) 

1) H0(CH2)30H 
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2) 2 eg n-BuLi , 
TIPSCI, 98 % 

3) DDQ, 96 % 

y">*"v.^^^0C0C6H4p-N02 

Tf^O. NEt^ , 
2) LDA, 

TMS—=—pOTMS 

CN 
NaF, 68 % 

OCH. 
Si(/-Pr)3 

(25) (26) 

With compound (26) in hand, Shibasaki needed to introduce an oxygen 

moiety alpha to the benzylic carbonyl and then cyclize to form the furan ring. 

Treating compound (26) with potassium fert-butoxide and maintaining an oxygen 

atmosphere, he was able to produce the dione (27) in 79 % yield. The dione was 

converted to the vinyl iodide (28) by exposing it to an excess of sodium iodide and 

copper(ll) sulfate. The cyclic acetal protecting group was then removed in almost 

quantitative yield to give the compound (29), which was poised for cyclization to 
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the furan ring moiety. Treatment of compound (29) with a catalytic amount of 

palladium closed both rings to afford the pentacyclic structure of halenaquinone (1) 

in 72 % yield. Removal of the triisopropylsilyl protecting group on the furan ring 

was achieved by treating with tetrabutylammonium fluoride in 83 % yield to afford 

compound (18), which had been previously synthesized by Harada and co­

workers. 

Scheme VI 

(26) KO-f-Bu, Oa 
79 % 

Pr)3 

Nal. CuSO^ 
97% 

OCH3 0 

(27) 

OH Si(APr)3 
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OCH3 O 

(28) 
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2) n-Bu4NF, 83 % 
(1) 

OCH3 O 

(18) 
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The synthesis by Shibasaki, like the synthesis of Harada, had the drawback 

of its key step, the cascade Suzuki cross-coupling and asymmetric Heck reaction 

[compound (21) to compound (23) in Scheme IV], suffering a low yield. However, 

the synthesis of Shibasaki had the advantage of being more efficient in that no 

extra chiral centers were created at any point. 

The final approach that will be presented is an approach by Keay and co­

workers at the University of Calgary.® Keay's key step is an intramolecular 

palladium-catalyzed cyclization. Keay begins his synthesis (Scheme VII) with the 

readily available 3-(hydroxymethyl)furan (30). He protects the alcohol with a tert-

butyldimethylsilyl protecting group in excellent yield. Treatment of the protected 

alcohol with n-BuLi/HMPA in THF caused 1,4-silyl migration of the silyl protecting 

group to the 2-position of the furan, providing compound (31) in 87 % yield. 

Scheme VII 

1)TBDMSCI 
imidazole 

HQ 

2) n-BuLi 
87 % 0 \ 

(30) (31) 

Keay then modified the Suzuki coupling reaction (Scheme VIII). He first 

treated compound (31) with two equivalents of n-BuLi to form the anion at the 4-

position of the furan ring. Quenching the dianion with trimethylborate gave 

compound (32), which was not isolated but instead used in situ. After ensuring that 

the anion was completely quenched by stirring for one hour, 2-bromopropene was 

added along with a catalytic amount of tetrakis(triphGnylphosphinG)palladium(0) to 

give an 85 % yield of the desired furan (33). This furan was then subjected to a 
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Swem oxidation to give tiie aldehyde in 75 % yield, and that aldehyde was 

changed to the con-esponding alkene via a Wittig reaction to give compound (34) 

in 87 % yield. The furan (34) was then lithiated and quenched with the acid 

chloride (35) to produce the desired ketone (36) in 77 % yield. 

Scheme VIII 

HQ 
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Pd(PPh^)4 
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Keay was now ready to attempt his key intramolecular palladium-catalyzed 

cyclization. Treating compound (36) (Scheme IX) with 10 mol percent of Pd(PPh3)4 

cyclized the two six-membered rings to form compound (37). Unfortunately, 

compound (38) was also produced in a significant amount. Overall, the two 

products were formed in 74 % yield with the desired compound (37) favored by a 

two to one margin. 

Scheme IX 

10 mol % Pd(PPhq|4 
20 eq NEta, 100 °C 

74%, (37):(38)/2:1 

+ 

O O 

(37) (38) 

Although this cyclization is a very novel concept, Keay still has a ways to go 

before the synthesis of halenaquinone (1) is complete. First of all, the correct 1,4-

dimethoxynaphthalene unit analogous to compound (35) must be synthesized. 

The starting material for such a compound is not very readily available, and 

therefore would have to be synthesized from scratch. Another problem that Keay 

might face is the lack of selectivity for any reaction done on the double bond in 

compound (37). Trying to install a ketone from this moiety would more than likely 

produce a mixture of isomers. 

Results and Discussion 

We became interested in halenaquinone (1) because only one total 

synthesis of the molecule had been reported at the time we initiated work on the 
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project. That synthesis was done by Harada'' and Involved a very low yielding 

thermal [4+2] cycloaddition as its key step. We hoped to design a more efficient 

synthesis that improved on this low overall yield. Since that time, another synthesis 

of halenaquinone (1) has been completed.® However, like the synthesis done by 

Harada, the overall efficiency is not all that impressive due to a low yielding (20 %) 

key step. Continuing in the study of tandem photoenolization/[4+2] cycloaddition 

reactions that has been well-documented in our group,we set off to find a new 

and improved pathway to halenaquinone. 

Our original retrosynthetic analysis is shown in Scheme X. We envisioned 

that halenaquinone (1) could come from a precursor such as (39). The 

naphthalene ring moiety could be made by elimination of the benzylic alcohol and 

cleavage of the lactone oxygen. The allyl group on compound (39) would serve as 

a functional handle for completing the fourth and fifth rings. The lactone moiety 

would eventually be reduced all the way down to provide the methyl group of 

halenaquinone (1). In addition, the methoxy enol ether would serve as a functional 

handle for installing the furan ring. We proposed that the precursor (39) would be 

made via a tandem photoenolization/[4+2] cycloaddition reaction done on an 

intermediate such as compound (40). The ester (40) would be made via 

condensation of an appropriately functionalized 2,5-dimethoxybenzyl alcohol (41) 

and the corresponding carboxylic acid (42). The alcohol (41) would come from 

quenching the anion of the readily available 2,5-dlmethoxybenzyl alcohol with an 

appropriate electrophile. On the other hand, generation of the cyclohexadiene 

compound (42) would be accomplished by perfonning a Birch reduction on m-

anisic acid (43) and alkylating the resulting anion with allyl iodide, installing the 

only quaternary center in halenaquinone (1) in the very first step. 
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Scheme X 
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We began our synthesis of halenaquinone (1) (Scheme XI) by subjecting 

2,5-dinnethoxybenzyl alcohol (44) to two equivalents of n-BuLi and quenching the 

resulting dianion with A/,A/-dimethylformamide to form the hemiacetal (45) in 66 % 

yield, Metallation occurs exclusively at the 6-position due to the directing effects of 

the neighboring benzyl alcohol.The aldehyde was then protected as a thioketal 

by treating compound (45) with 1,2-ethanedithiol (46) and a catalytic amount of 

boron trifluoride diethyl etherate to provide compound (47) in 91 % yield. 

Scheme XI 

(47) 

The other half of the molecule was prepared by subjecting m-anisic acid 

(43) to the conditions of the Birch reduction and quenching the resultant anion with 

ally! bromide to afford compound (42) in 80 % yield.^^ 

(44) (45) (46) 

OMe 

1) Li. NH3 
2) allyl bromide 

80% 

(43) (42) 
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With the two products (42) and (47) in hand, it was now time to condense 

them into the corresponding ester. This was done (Scheme XII) by treating a 

mixture of the two with 1,3-dicyclohexylcarbodiimide (DCC) and a catalytic amount 

of 4-dimethylaminopyridine (DMAP) to give compound (48) in 34 % yield. 

Naturally, we were disappointed in the low yield, but we more interested In seeing 

whether or not our key photolysis reaction would work. Therefore, no attempt to 

improve the yield was ever made. The last step before the photolysis involved 

removing the thioketal protecting group. A variety of conditions were tried, and the 

condition that worked the best was treating compound (48) with 

[bis(trifluoroacetoxy)iodo]benzene in a solution of aqueous acetonitrile. This gave 

the corresponding aldehyde (40) in 45 % yield. 

Scheme XII 

OMe 
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The next step was the key photolysis reaction. At the time, we were very 

curious to see which double bond would react with the diene. Compound (40) had 

the possibility of cyclizing three different ways (Scheme Xill). The first way, which 

we thought was unlikely due to steric considerations, would be to cyclize onto the 
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Scheme Xlli 
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double bond which contained the methoxy enol ether moiety to give compound 

(49). The second double bond which could react, and the one that we hoped 

would react, was the unsubstituted double bond on the cyclohexane ring. The 

compound that would have been formed via this pathway was (39). The final 

pathway would involve the diene reacting with the double bond on the allyl 

substituent to give compound (50). Upon doing the reaction, we were 

disappointed to find that cyclization occurred via this final pathway. 

Scheme XIV 
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At this point we still felt that our original route could be used with just a few 

modifications. We went back to the beginning and changed the allyl group, since it 

was causing the problems, to a methyl group (Scheme XIV). Using the same 

conditions as before, a Birch reduction of m-anisic acid (43) and quenching with 
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methyl iodide would produce the carboxylic acid (51). The acid could then be 

converted to the ester (52), which upon subjection to light should give the 

intennediate (50). Connpound (50) could then be converted to halenaquinone (1) 

by elinnination of the benzylic alcohol and ester to give the naphthalene ring 

system. The lactone moiety would then serve as a functional handle for completion 

of the fourth and fifth rings. 

The original pathway was followed exactly as before with the exception that 

the allyl group was substituted by a methyl group. Birch reduction of m-anisic acid, 

followed by quenching with methyl iodide, produced the carboxylic acid (51) in 

near quantitative yield (Scheme XV). Using the same conditions as before, the 

acid (51) was esterified to provide compound (53) in 67 % yield. This was a 

significant increase (34 % to 67 %) from the other version, and much of it is due to 

the lack of steric hindrance of the methyl group, making attack at the carboxylic acid 

much easier for the nucleophile. Compound (53) was then deprotected in 59 % 

yield to provide the aldehyde (52). This aldehyde was then photolyzed and heated 

to form what we at first thought was compound (50). It might be noted that the 

stereochemical assignments were made based on previous work done in our 

group. 

Taking compound (50), we then tried several experiments in which we 

attempted to form the naphthalene ring. We assumed that if we could eliminate the 

alcohol, the lactone ring would open up as well (Scheme XVI). However, several 

types of dehydration conditions failed to produce any type of new naphthalene (54) 

or any type of new alkene for that matter. We then tried to form a cyclopropane ring 

on the enol ether double bond. A compound such as (55) could be used to fonn 

the furan moiety. However, we were unable to successfully complete any type of 

cyclopropanation reaction. The reasons for these failures would become clearer 

later on when we discovered the true structure for compound (50). 
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Scheme XV 
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Scheme XVI 
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At the time, we theorized that the molecule (50) must have been assuming 

some type of unexpected confomiation that was prohibiting the alcohol from 

eliminating. We next set out to design a system that would place a carbonyl alpha 

to the hydrogen that needed to be eliminated. This carbonyl would hopefully 

promote dehydration of that alcohol. We also decided that we would try to make 

our approach more convergent by installing the furan ring at the beginning of the 

synthesis. The retrosynthetic analysis called for a precursor like compound (57), 

which could be esterified to the intennediate (56). Photolysis of (56) would then 

lead to the type of precursor which could be dehydrated easily. 
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(1) (56) (57) 

We then set out to make the carboxylic acid (57) (Scheme XVII). We began 

by taking the carboxylic acid (51), esterifying it, and hydrolyzing it to the 

corresponding enone (58). This compound (58) was then alkylated with ally! 

iodide to fonn (59) in moderate yield. Compound (59) was then subjected to 

ozonolysis in the presence of Sudan Red 76,^" which selectively cleaved the more 

electron rich double bond to give the 1,4-dicarbonyl compound (60) in quantitative 

yield. 

Scheme XVII 
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Unfortunately, all attempts to convert compound (60) to the desired furan 

(61) met with failure (Scheme XII). Various mineral acids and Lewis acids were 

tried without any success. Conversion of the aldehyde on compound (60) to its 

corresponding cyanohydrin and then treating with various acids also failed to give 

the desired furan (61). Due to the lack of success, this approach was quickly 

abandoned. 

Scheme XVIII 
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We changed our strategy once again. This time we proposed an 

intermolecular [4+2] cycloaddition as our key step (Scheme XVIII). Photolysis of a 

mixture of compounds (63) and (64) would give an intermediate such as 

compound (62). This intermediate (62) could be readily dehydrated to form the 

naphthalene ring, and in addition 1,4-addition of a cuprate to the enone would give 
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the desired methyl substituent of halenaquinone (1). The compound (62) also 

provided handles for installing the last two rings. 

Compound (64) was quickly assembled from cyclohexanone (65) (Scheme 

XIX). Treatment of cyclohexanone (65) with the lithium anion of ethyl propiolate^® 

(66) provided the allyl alcohol (67) in 50 % yield. Oxidation of (67) provided the 

enone (64) in 74 % yield. The aldehyde (63) was prepared from the readily 

available 2,5-dimethoxybenzyl alcohol by lithiation, quenching with methyl iodide 

and then oxidation of the alcohol. Compounds (63) and (64) were mixed and 

Irradiated, but none of the desired addition product (62) was Isolated. 

Scheme XIX 
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We then tried briefly to cyclize the enone (64) with the 1,3-

dihydrobenzo[c]thiophene 2,2-dioxide'® (68), but once again the reaction met with 

failure. The reaction eventually worked, but a large excess of the dienophile was 

required for success. Due to the expense for such a large amount of compound 

(64) and the purification procedures that would be involved, this approach was 

discontinued. 

OMe 

(6«) + 1^^^ >02 — — (62) 

OMe 

(68) 

We then retumed to the intramolecular approach and hoped that with a few 

modifications we would be able to continue. The next idea that we had (Scheme 

XX) was to add a 3-lithiofuran (69) to a compound such as (70). We assumed that 

the nucleophile would add to the benzylic ketone before adding to either of the 

esters. The resulting compound would still have plenty of functional handles that 

would be needed for further manipulation to the pentacyclic ring system. We 

proposed that (70) would come from an intermediate such as the tricyclic 

compound (71). The seven-membered lactone (71) would be made via our 

tandem photoenolization/[4+2] cycloaddition sequence from (72). This would be 

an interesting extension of the work that we had already completed. Before we had 

used this methodology to design 6,6,5-ring systems, and now we were curious if 

we could apply this same type of strategy to make 6,6,7-ring systems. 
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Scheme XX 
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The first step would be to make the corresponding carboxylic acid that would 

be used to make the intermediate ester (72). Using the lithium anion of ethyl 

propiolate (66)/® we opened up succinic anhydride (73) to form the highly-

functionalized carboxylic acid (74) in a modest 45 % yield (Scheme XXI). We then 

coupled this acid (74) with the alcohol (47) to provide the ester (75) in a 

disappointingly low yield of 35 %. Once again we were not too worried about the 

low yield, but instead we wanted to focus on the key photoenolization step. 

Removal of the thioketal protecting group was easily accomplished using the 

periodane reagent to give the aldehyde (72). The aldehyde (72) was then 

subjected to irradiation, and the benzocyclobutenol (76) was isolated. This 

V 

MeO 0 

MeO OH 
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compound (76) was immediately themolyzed to provide compound (77) in 56 % 

yield over the two steps. 

It might be mentioned at this point that when doing the tandem 

photoenolization/[4+2] cycloaddition sequence, one generally obtains a mixture of 

the desired cycloaddition product and the benzocyclobutenol after the photolysis. 

In general it is easier to heat this mixture to promote cleavage and cyclization of the 

benzocyclobutenol to the desired cycloaddition product, rather than isolating both 

products after the irradiation with light. 

We were glad to see that formation of a seven-membered ring was possible 

using our tandem photoenolization/cycloaddition strategy. However, the product 

(77) had eliminated water and formed a naphthalene ring with our lactone still 

attached. This presented a problem in that cleavage of the lactone would leave a 

hydroxyl group on the aryl ring. Elimination of this oxygen and replacement with a 

hydrogen would be a difficult task, and we felt that it would be best to pursue other 

avenues. 

Scheme XXII 

.0 

'3 

OMe 
OMe O 

OMe OH 

(50) (52) 

P 

(52) 1) hv 
2) A 

OMe 

OMe 

(78) 
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At this point, we felt that our best strategy had been the one starting with m-

anisic acid, doing the Birch reduction, and then alkylating with methyl iodide 

(Scheme XV). However, we were puzzled as to why the final product (50) 

(Scheme XXII, previous page) from that set of reactions would not undergo 

elimination of the benzylic alcohol to provide the naphthalene ring. Our original 

hypothesis was that the tetracyclic ring system was in a confomiation such that 

elimination was not possible. However, upon further examining the question, we 

came to the conclusion that we had incorrectly identified compound (50). Upon 

further characterization, we concluded that the compound did not have an alcohol 

present, but instead the alcohol had added to the double bond of the enol ether to 

form the cyclic ketal. The true structure was in fact compound (78). 

This would explain why elimination was not occurring when compound (50) 

was treated with methansulfonyl chloride and triethylamine. This structure would 

also explain the failure of the cyclopropanation reaction (see Scheme XVI) 

because the carioene had no alkene upon which to react. We also made the 

observation that we did not try to eliminate the alcohol using p-toluenesulfonic acid 

(PTSA), and that we had only tried to eliminate with basic conditions. Upon 

examining the structure, we realized that treating compound (78) with an acid 

should cause aromatization of the ring, providing us with a valuable intermediate 

towards our synthesis of halenaquinone (1). 

We treated the compound (78) with PTSA in refluxing methanol and were 

pleased to discover that we obtained compound (79). Generally, it was easier to 

do the photolysis, themriolysis, and the elimination all in one sequence without 

purification. Purification after each step did not increase yields and was rather 

cumbersome. In addition, subjecting compound (78) to the conditions of silica gel 

chromatography hydrolyzed the cyclic ketal, causing a loss of material as well 

complicating the purification procedure. 
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OMe 
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(78) (79) 

We were somewhat surprised to obtain the methoxy enol ether in compound 

(79) as we expected to get the dimethoxy acetal instead. We attempted to run the 

reaction under milder conditions, but we were unsuccessful as elimination of 

methanol occurred too easily. We later attempted to form the dimethoxy acetal by 

using mercuric acetate in methanol followed by reduction with sodium 

borohydride,^^ but once again only starting material was recovered as elimination 

of methanol was too facile. 

With compound (79) in hand, our first plan of attack was to reduce the ester 

and convert it to some type of leaving group. We would then attack it with some 

type of nucleophile and cyclize the final two rings. Therefore, we treated the ester 

(79) with lithium aluminum hydride to provide the alcohol (80) in 75 % yield. The 

alcohol was then converted to the tosylate (81). 

OMe Me —qH OMe Me —qTs 

(79) LiAIH^ 
75% 

TsCI, Pyr^ 

OMe OMe 

OMe OMe 

(80) (81) 
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The nucleophile that we wanted to add to compound (81) was the anion of 

4-methoxy-3-buten-one (82). The resulting product (83) would then contain 

functionality that could be transfomied into the furan ring of halenaquinone (1) as 

well as correctly positioning one of the carbonyls. Unfortunately, we were 

dismayed to discover that the anion of 4-methoxy-3-buten-2-one does not alkylate 

well except if the electrophile is an acid chloride/® With the leaving group 

occupying a neopentyl carbon, attack by a nucleophile would be modest at best. 

Therefore, we decided to change our plans. 

(81) + 
OMe 

(82) 

OMe 

OMe 

(83) 

We planned to work around the neopentyl carbon issue by resorting to 

radical chemistry. Radicals are not as susceptible to steric hindrances as are 

nucleophlles.^® First compound (81) was converted to a radical precursor by 

changing the tosylate to the corresponding iodide (84) (Scheme XXIII). We then 

attempted to add acrylonitrile (85) to compound (84) by initiating the radical with 

tri-n-butyltin hydride,^" but we were unsuccessful in obtaining compound (86). 

We then tried a different radical source by converting the alcohol (80) to the 

corresponding thioacylimidazole (88) (Scheme XXIV). Using the chemistry 

developed by Keck,^^ we then attempted to add an allyl group to this compound 

(88) by photolyzing a mixture of (87) with allyltri-n-butylstannane, but once again 
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Scheme XXIII 
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we were unable to isolate the addition product (89). Due to the lack of success that 

we were having with the radical chemistry, both photochemically and thermally, we 

decided to abandon the idea for the moment and focus our efforts on a different 

type of reaction. 

Scheme XXIV 

OMe Me ^qH 
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OMe 
OMe 
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At this point, we began to run low on the amount of material that we had 

available so we began to redirect our efforts towards building a model system 

before trying any more chemistry on the real system. The model system that we 

chose to build was a cyclohexanone ring fused to a furan in hopes that we could 

build an analog of halenaquinone (1). We started with 1,2-cyclohexanedione 

because we felt that we could convert any of the compounds that we made (79 or 

80) into a dione by dihydroxylating the double bond and then oxidizing. 

Working in conjunction with the MS-444 project, we tried to assemble the 

furan ring using chemistry developed by Hanson.^ We combined 1,2-

cyclohexanedione^^ (90) with dihydroxyacetone (91) and zinc chloride in hopes 

that we could form the furan (92). A system of this sort could be applied to a dione 

derived from (79) to give the corresponding furan which would contain a functional 

handle for completing the final ring of halenaquinone (1). Unfortunately, we were 

unsuccessful in our efforts to make the furan (92). 

We then tried to establish the furan system by a Michael addition sequence, 

using a nitro alkene as the Michael acceptor. Hydrolysis of the nitro group and 

elimination would then lead to the desired product. However, we were 

unsuccessful at adding the nitro alkene (93) to 1,2-cyclohexanedione (90) 

(Scheme XXV), even after trying a wide variety of conditions. We were also 

unsuccessful at adding the nitro alkene to the monosilyl ether of 1,2-

dicyclohexanedione (95), using the procedure developed by Yoshikoshi.^'^ 

O 

OH 
(90) (91) (92) 
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Scheme XXV 
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The final attempt that we made at constructing a model system involved 

making the monoallyl ether (97)^® and subjecting it to the Claisen rearrangement to 

provide compound (98) in 60 % yield (Scheme XXVI). With this compound (98) In 

hand, we hoped to convert the ally! double bond into an aldehyde by ozonolysis. 

Selectivity between the two alkenes would hopefully be achieved by using Sudan 

Red III as an indicator.^'^ Unfortunately, the enone alkene was too electron rich, and 

no selectivity could be obtained, providing nothing but a mixture of products. 

Conclusions 

We have demonstrated a unique pathway to the core skeleton of 

halenaquinone (1) via a tandem photoenolization/[4+2] cycloaddition sequence. 

We have obtained a ring structure which contains three of the five rings found in 

halenaquinone (1). In addition, the intermediate that we have made has the 

potential for further manipulation into the target molecule. 
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Scheme XXVI 
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Experimental 

Unless otherwise noted, materials were obtained from commercial suppliers 

and used without additional purification. Diethyl ether and tetrahydrofuran (THF) 

were distilled from sodium benzophenone ketyl. Benzene was distilled from lithium 

aluminum hydride. Toluene and methanol were distilled from sodium. 

Dichloromethane (CHgCy, and acetonitrile were distilled from calcium hydride. All 

reactions were conducted under an argon atmosphere and all extracts were dried 

over anhydrous sodium sulfate or anhydrous magnesium sulfate. Apparatus for 

experiments requiring anhydrous conditions were flame-dried under a stream of 

argon or dried in a 150 °C oven for 12 hours and cooled under a stream of argon. 

Alumina chromatography was conducted using activated neutral aluminum oxide, 

Brockmann I, standard grade (150 mesh), which was purchased from Aldrich 

Chemical Company. Silica gel chromatography (sgc) was performed on EM 

Science Kieselgel 60 (mesh 230-400). Thin layer chromatography (tic) was 

performed using EM Science Kieselgel F254 prepared plates with a thickness of 

0.25 mm. The solvent systems were suitable mixtures of hexanes (H) and ethyl 

acetate (EA) unless othen/vise noted. Infrared spectra were obtained on a Perkin-
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Elmer 1320 spectrophotometer and are reported in cm"\ Proton nuclear magnetic 

resonance spectra (300 MHz) were obtained using a Nicolet Magnetics 

Corporation NMC-1280 spectrometer. All chemical shifts are reported in 5 relative 

to tetramethylsilane as an intemal standard. Splitting patterns are designated as s 

(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of 

triplets), and m (multiplet); the addition of br indicates a broadened pattem. 

Carbon-13 NMR spectra (75.46 MHz) were obtained on a Nicole NMC-1280 

spectrometer and are reported in 5 relative to CDCIg (77.00 ppm) as an internal 

standard. High resolution mass spectra (HRMS) were obtained on a Kratos model 

MS-50 spectrometer. Low resolution mass spectra (MS) were obtained on a 

Finnigan 4023 mass spectrometer. The purity of all title compounds was 

determined to be > 90 % by ^H NMR spectral detemriination. 

1,3-Dihydro-1 -hydroxy-4,7-dimethoxyisobenzofuran (45). 

Following the procedure of Chen and Kraus,^° to a solution of 29.4 g (175 mmol) of 

2,5-dimethoxybenzyl alcohol (44) in 600 mL of THF was added n-BuLi (350 mmol, 

140 mL of 2.5M solution) at 0 °C. The resulting solution was boiled for six hours 

and cooled to 0 °C. /\/,A/-Dimethylformamide (15 mL) was then introduced into the 

solution and the mixture was stirred for 12 hours. After the reaction was quenched 

with 200 mL of saturated NH^CI solution and IN HCI, the solution was stirred 

overnight. The white precipitate was collected and the aqueous layer was then 

extracted with ethyl acetate (200 mL three times). The combined organic layer was 

washed with brine and dried with MgS04. The solvent was then concentrated to 

about 30 mL, and the white solid was collected by filtration to yield 22.7 g (66 %) of 

a white solid: mp 156-157 °C. 'H NMR (CDCy 6 3.07 (d, J = 7.2 Hz, 1H), 3.80 (s, 

3H), 3.84 (s, 3H), 5.00 (d, J = 13.2 Hz, 1H), 5.30 (dd, = 13.2 Hz, = 2.1 Hz, 1H), 

6.58 (dd, = 7.2 Hz, Jg = 2.1 Hz, 1H), 6.74 (d, J =7.4 Hz, 1H), 6.78 (d, J = 7.4 Hz, 

1H). IR (film) 3560, 2940, 1500, 1300, 1020 cm \ TLC (1:1 H:EA) R, = 0.33. 
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2-(2-Hydroxymethyi-3,6-dimethoxyphenyl)-1,3-dithiolane (47). 

Following the procedure of Kraus and Chen/° the hemlacetal (45) (8.9 g, 45 mmol) 

was mixed In 150 mL of CHjCig. To this solution was added 1,2-ethanedithlol (46) 

(5.5 mL, 60 mmol). Boron trifluoride etherate (0.5 mL, 4 mmol) was added to the 

solution at 0 °C. The resulting mixture was stirred for 12 hours at room 

temperature. To this mixture, 10 mL of 2N NaOH solution was added, and the 

solution was stirred for another two hours. The mixture was diluted with 200 mL of 

CHgClg and washed with 50 mL of 2N HCI and brine. The organic layer was then 

dried over MgS04. Purification of the crude material was achieved by flash column 

chromatography over silica gel to give 11.21 g (91 %) of a white solid. NMR 

(CDCy 5 3.05 (t, J = 7.2 Hz, 1H), 3.37 - 3.64 (m, 4H), 3.81 (s, 3H), 3.84 (s, 3H), 5.12 

(d, J = 7.2 Hz, 2H), 6.60 (s, 1H), 6.80 (d, J = 9.0 Hz, 1H), 6.86 (d, J = 9.0 Hz, 1H). 

NMR (CDCy 5 40.1, 46.2, 55.3, 55.9, 56.5, 111.1, 111.4, 124.4, 131.1, 151.6, 

153.1. TLC (2:1 H:EA) R, = 0.26. 

3-Methoxy-1-methyl-2,5-cyclohexadiene-1-carboxylic acid (51). 

The following is a slight modification of the procedure of Birch.The m-anisic acid 

(43) (10.0 g, 65.7 mmol) was dissolved in 30 mL of THF. To this solution was 

added 250 mL of ammonia at -78 °C. Pieces of lithium (1.14 g, 165 mmol) were 

then added cautiously to the slightly heterogeneous reaction mixture until a blue 

color persisted. Sometimes excess lithium had to be added to maintain the blue 

color. After 20 minutes, methyl iodide (4.9 mL, 79 mmol) was added slowly to the 

reaction mixture. The solution was stirred for one hour and quenched with solid 

NH4CI (15 g). The ammonia was allowed to evaporate, and the resulting residue 

taken up in water. The aqueous layer was extracted once with ether (30 mL). The 

aqueous layer was then cooled in an ice bath at 0 °C while 3N HCI was added 

slowly. The temperature of the system must be kept below 5 °C to ensure that 

isomerization does not occur. Once the solution became acidic, it was extracted 

with ether (2 X 200 mL). The aqueous layer was re-acidified and extracted again 
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with ether (2 X 200 mL). The organic layers were combined, washed with brine, 

and dried over MgS04. Concentration provided 11.05 g (100 %) of a yellow oil that 

was generally pure enough for use without further purification. NMR 6 1.42 (s, 

3H), 2.72 (s, 2H), 3.66 (s, 3H), 4.80 (s, 1H), 5.85 (s, 2H). 

(2-(1,3-Dithian-2-yl)-3,6-dimethoxyphenyl)methyl 3-methoxy-1 -

methyl-2,5-cyclohexadiene-1-carboxyiate (53). The carboxylic acid (51) 

(4.13 g, 24.6 mmol), the alcohol (47) (5.17 g, 18.9 mmol), and 4-

dimethylaminopyridine (0.230 g, 1.89 mmol) were dissolved in 80 mL of CHgClg. 

To this solution was added a solution of 1,3-dicyclohexylcarbodiimide (5.84 g, 28.3 

mmol) in 20 mL of CHgClg at 0 °C. The solution was allowed to warm to room 

temperature overnight and then filtered through a glass frit. The solution was dried 

over Na2S04 and concentrated. The crude material was then subjected to flash 

column chromatography over silica gel (6:1 H:EA) to provide 5.33 g (67 %) of a 

clear viscous oil. NMR (CDCy 6 1.35 (s, 3H), 2.65 - 2.68 (m, 2H), 3.29 - 3.35 (m, 

2H), 3.53 - 3.57 (m, 5H), 3.76 (s, 3H), 3.83 (s, 3H). 4.80 (d, J = 1.1 Hz, 1H), 5.44 (s, 

2H), 5.69 (dt, = 10.0 Hz, Jg = 3.3 Hz, IN), 5.77 - 5.83 (m, 1H), 6.34 (s, 1H), 6.86 

(AB quartet, = 17.7 Hz, = 9.1 Hz, 2H). IR (film) 2932, 1732, 1593, 1485, 1098, 

732 CTn \ MS (CI) m/z 422, 255, 226, 195, 123. HRMS m/z calculated for 

CaiHaeOgSa: 422.1222, measured 422.1211. ^^C NMR (CDCy 6 28.6, 40.6 (2C), 

46.0, 46.9, 54.1, 56.5, 56.8, 58.3, 97.4, 111.9, 113.2, 122.5, 125.4, 127.5, 129.4, 

152.4, 153.3, 153.6, 175.8. TLC (2:1 H:EA) R, = 0.56. 

(2-Formyl-3,6-dimethoxyphenyl)methyi 3-methoxy-1 -methyl-2,5'-

cyclohexadiene-1-carboxylate (52) To a solut ion of  the thioacetal  (53) (3 .6 

g, 8.52 mmol) in 16 mL of acetonitrile/water (9:1) was added potassium carbonate 

(5.89 g, 42.6 mmol). To this heterogeneous solution was added the 

[bis(trifluoroacetoxy)iodo]benzene (5.5 g, 12.8 mmol) at 0 °C. The solution was 

stirred for six hours and poured into a sodium bicarbonate solution. The organic 
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layer was washed with brine, dried over Na2S04, and concentrated. The crude 

material was then subjected to flash column chromatography (6:1 H:EA to 4:1 

H:EA) on silica gel that had been washed with a 3 % triethylamine solution in 

hexanes. This afforded 1.75 g (59 %) of a white solid: mp 113-115 °C. 'H NMR 

(CDCg 6 1.29 (s, 3H), 2.62 (s, 2H), 3.52 (s, 3H), 3.77 (s, 3H), 3.85 (s, 3H), 4.70 (s, 

1H), 5.41 (s, 2H), 5.66 - 5.69 (m, 2H), 6.96 (d, J = 9.2 Hz, 1H), 7.08 (d, J = 9.1 Hz, 

1H) 10.52 (s, 1H). IR (film) 2892, 1723, 1684, 1589, 1482, 1268, 1103, 813, 718 

cm-\ MS (CI) m/z 347, 225, 179. HRMS m/z calculated for CigHggOe: 346.1416, 

measured 346.1413. ^'C NMR (CDCy 5 28.3, 28.4, 45.9, 53.9, 56.2, 56.7, 57.3, 

97.1, 112.7, 117.5, 122.5, 124.9, 125.2, 129.1, 152.4, 153.2, 156.3, 175.3, 191.6. 

TLC (2:1 H:EA) R, = 0.39. 

Methyl 1 -methyl-3,5,8-trimethoxy-1,2-dihydroanthracene-1 -

carboxylate (79). A benzene solution (65 mL) of aldehyde (52) (1.05 g, 3.03 

mmol) was degassed with argon for 30 minutes and was then photolyzed with a 

Rayonet reactor for ten hours. The solution was concentrated and dissolved in 

toluene and heated in a sealed tube at 210 °C for 24 hours. Concentration 

provided compound (78). This compound (78) was then generally taken on 

without further purification. 

Compound (78). However, purification over silica gel chromatography 

(5:1 H:EAto 1:1 H:EA) provided a viscous oil. ^H NMR (CDCI3) 5 1.56 (s, 3H), 1.82 

(d, J = 6.2 Hz, 1H), 1.86 (d, J = 4.3 Hz, 1H), 2.31 - 2.38 (m, 1H), 2.47 - 2.52 (m, 1H), 

2.77 (dd, J, = 13.9 Hz, Jg = 2.2 Hz, 1H), 3.02 - 3.08 (m, 1H), 3.42 (s, 3H), 3.81 (s, 

3H), 3.83 (s, 3H), 5.26 (d, J = 2.5 Hz, 1H), 6.15 (d, J = 10.3 Hz, 1H), 6.86 (s, 2H). IR 

(film) 2960, 1757, 1488, 1264, 1107. TLC (2:1 H:EA) R, = 0.15. 

The crude mixture of compound (78) was then dissolved in 150 mL of 

MeOH. p-Toluenesulfonic acid monohydrate (0.057 g, 0.300 mmol) was then 
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added, and the solution was heated at reflux overnight. The solution was then 

diluted with CH^CI^ and washed with saturated sodium bicarbonate solution. The 

organic layer was washed with brine, dried over Na2S04, and concentrated. The 

crude material was purified via flash column chromatography (10:1 H.EA) to give 

0.235 g (23 % over 3 steps) of a viscous oil. NMR (CDCI3) 5 1.73 (s, 3H), 2.44 

(d, J = 16.1 Hz, 1H), 3.09 (d, J = 16.1 Hz, 1H), 3.66 (s, 3H), 3.74 (s, 3H), 3.94 (s, 6H), 

5.78 (s, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 7.80 (s, 1H) 8.06 (s, 

1H). IR (film) 2951, 1731, 1648, 1462, 1271, 1092, 722 cm \ MS (CI) m/z 343, 320, 

303,288. HRMS m/z calculated for C20H22O5: 342.1467, measured 342.1472. 

NMR (CDCI3) 6 24.2, 38.2, 47.8, 52.3, 54.8, 55.4, 55.6, 96.4, 102.1, 103.4, 117.0, 

118.4,  124.1,  125.9,  133.0,  133.8,  148.9,  149.5,  158.6,  176.1.  TLC (4:1 H:EA) R,= 

0.41. 

1 -Hydroxymethyl-1 -methyl-3,5,8-trimethoxy-1,2-

dihydroanthracene (80). To a solution of ester (79) ( 0.030 g, 0.088 mmol) in 3 

mL of ether was added lithium aluminum hydride (0.033 g, 0.88 mmol) at 0 °C. The 

reaction was monitored by TLC. The excess LiAIH4 was carefully quenched with 

water and then 1N NaOH was added. After stirring for one hour, water was again 

added, and the solution was filtered and extracted with ether. The organic layers 

were combined, washed with brine, dried over MgS04, and concentrated to provide 

0.0202 g (75 %) of a white solid that quickly decomposed unless stored at 0 °C 

under an argon atmosphere. ^H NMR (CDCI3) 5 1.44 (s, 3H), 2.40 (d, J = 16.7 Hz, 

1H), 2.55 (d, J = 16.7 Hz, 1H), 3.56 (d, J = 11.0 Hz, 1H), 3.72 - 3.76 (m, 4H), 3.94 (s, 

6H), 5.75 (s, 1H), 6.58 (d, J = 8.3 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 7.78 (s, 1H) 8.03 

(s, 1H). ^^C NMR (CDCI3) 523.4, 36.8, 41.2, 54.7, 55.5, 55.7, 68.5, 96.4, 102.1, 

103.3, 117.4, 117.6, 124.1, 125.8, 133.7, 135.6, 148.9, 149.4, 158.6. TLC (4:1 

H:EA) R,=:0.18. 
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GENERAL CONCLUSIONS 

It Is the duty of the synthetic chemist to incorporate all disciplines of organic 

chemistry into his or her intellectual arsenal. The task of building complex natural 

products demands that he or she use all of his or her skills to finish the project 

quickly and efficiently. In addition to these intellectual skills, the synthetic chemist 

must also be innovative and willing to try new ideas to solve the various problems 

which he or she may encounter. 

In conclusion, we have developed pathways to a number of different natural 

products and several of their biologically interesting analogs. In the first project, we 

developed a pathway that completed four of the five rings of ebumamonine. This 

same pathway was then used to complete a variety of indolo[2,3-a]quinoli2ine 

analogs, proving its generality and versatility. In the second project, we developed 

a pathway to the core structure of MS-444, a biologically interesting compound. 

We also developed methodology that can be used for synthesizing highly-

functionalized furans. Finally, in the third project, we have developed a synthetic 

pathway to the core structure of halenaquinone. The intermediates that we have 

synthesized have functional handles which enable further manipulation to the 

target molecule. Hopefully, one day this goal may be realized. 
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